在 AI Engineer 大会的舞台上,OpenAI的联合创始人兼总裁Greg Brockman坐下来,进行了一场坦诚而深入的对话。这位AI领域的关键人物,平时低调,却在这次访谈中分享了他非同寻常的个人经历、OpenAI背后的故事,以及对技术未来的深刻洞见。这不仅仅是一次访谈,更像是一次与朋友的促膝长谈,充满了有趣的轶事和宝贵的经验。
从数学梦到代码“魔法”:一个意外的开始
你可能很难想象,这位如今在代码世界里呼风唤雨的大神,最初的梦想其实是成为一名数学家。他着迷于像伽罗瓦和高斯这样的天才,梦想着能在长达数百年的时间尺度上做出贡献。“如果我提出的任何东西在我有生之年就被用上了,”他开玩笑说,“那说明它还不够长远,不够抽象。”
然而,命运的转折点来得有些突然。高中毕业后,他写了一本化学教科书,但朋友告诉他:“没人会出版这个的。你要么自己想办法,要么就建个网站吧。”面对自费出版的高昂成本和繁杂工作,他果断选择了后者。
“于是,我猜我得学学怎么做网站了。”
他就这样一头扎进了W3Schools的PHP教程(在场的很多老程序员都会心地笑了)。他做的第一个小东西是一个表格排序插件。当他点击列标题,表格真的按照他脑海中的设想排序时,他感到了一种前所未有的“魔法”。
“数学的奇妙在于,你深入思考一个问题,用一种晦涩的方式(我们称之为‘证明’)写下来,然后可能只有三个人会关心。但编程不一样,你同样用一种晦涩的方式(我们称之为‘程序’)写下来,可能也只有三个人会读你的代码,但所有人都能享受到它带来的好处。你脑海中的想法变成了现实,实实在在地存在于世界上。那一刻,我意识到,这才是我真正想做的事。”
对百年时间尺度的执念,瞬间被创造的即时快感所取代。他只想去“构建”(build)。
辍学加入Stripe:挑战极限的“24小时奇迹”
正是这种构建的热情和惊人的天赋,让还在上大学的Greg收到了Stripe的冷启动邮件。当时,Stripe还只是一个三個人的“庞大”公司。通过哈佛和MIT的朋友圈推荐,Stripe找到了这位在两所顶级学府都留下过足迹的“双料红人”。
Greg回忆起与Stripe创始人Patrick Collison的第一次见面,那是个风雨交加的夜晚,两人一见如故,彻夜畅聊代码。他立刻感觉到:“这就是我一直想合作的那种人。”于是,他毅然从MIT辍学,飞往了加州。
早期的Stripe远比外界想象的要艰难。一个流传甚广的“都市传说”是Stripe工程师会帮客户上门安装代码,虽然这只发生过寥寥几次,但它背后“客户至上”的精神是真实的。Greg分享了一个更惊心动魄的故事:
当时,Stripe急需从原有的支付后端迁移到富国银行(Wells Fargo),但银行方面表示,技术对接通常需要9个月。对于一家初创公司来说,9个月简直是天方夜谭。
“我们不能等,”Greg说。于是,他们把这次技术对接当成了一次大学里的“期末冲刺”。
- 24小时内,整个团队像解题一样分工合作:Greg负责实现所有功能,John Collison从上到下写测试脚本,Daryl从下往上验证。
- 第二天早上,他们与银行的认证人员通话,第一次测试失败了。对方习惯性地说:“好的,那我们下周再聊。”
- Patrick则像个出色的“拖延大师”,在电话里不停地找话题,为Greg争取宝贵的调试时间。就在那通电话里,他们调试了5轮代码。
- 虽然最终还是失败了,但对方被他们的执着打动,破例在两小时后给了他们第二次机会。这一次,他们成功了。
“就因为我们没有接受那些所谓的‘常规流程’,”Greg总结道,“我们在短短几个小时内,完成了正常情况下需要六周才能完成的开发工作。” 他认为,这种从第一性原理出发,敢于挑战那些不再适用于当今环境的“无形约束”,是创业和创新的关键所在。
点燃AGI之火:从图灵的“孩童机器”到深度学习的春天
早在2008年,Greg就读了艾伦·图灵1950年的那篇奠基之作《计算机器与智能》。最让他震撼的,不是“图灵测试”本身,而是图灵提出的一个超前构想:
“你永远无法为智能写下所有的规则。但如果你能创造一个像人类孩童一样学习的‘孩童机器’(child machine),然后通过奖励和惩罚来教育它,它最终就能通过测试。”
这个想法深深地吸引了他:一台能够自己理解和解决问题,甚至超越人类程序员理解能力的机器。这感觉才是解决人类重大问题的根本之道。然而,当他兴冲冲地去找一位NLP教授时,对方却递给他一堆“语法分析树”(parse trees),这让他感到理想与现实的巨大差距,一度陷入了“绝望之谷”。
直到深度学习的浪潮袭来。
2012年的AlexNet在ImageNet竞赛中一鸣惊人,一个相对通用的学习机器,用卷积神经网络,轻松击败了计算机视觉领域几十年的研究成果。很快,这个“魔法”开始在NLP、机器翻译等各个领域复现,打破了不同学科间的壁垒。
“那一刻,我意识到,这就是图灵所说的那种技术。”Greg说。
他发现,神经网络的核心思想可以追溯到1943年,而那些在“AI寒冬”中被嘲笑为“只会堆砌更大计算机”的研究者,恰恰做对了事情。“是的,”他笑着说,“这正是我们所需要做的。”
所有因素都已具备,现在,只需要去构建。
构建OpenAI:当工程师文化遇上学术研究
在2022年,Greg曾写道:“现在是成为ML工程师的时代。”他坚信,优秀的工程师与优秀的研究员对未来的贡献同等重要。这种“研究与工程并重”的理念,从一开始就根植于OpenAI的文化中。
但他坦言,融合两种文化并不容易。
- 工程师习惯于清晰的接口(interface),认为只要接口不变,背后的实现可以随意更改。
- 研究员则不然,因为模型性能的细微下降可能来自系统任何地方的bug,他们必须理解整个系统,接口的抽象在他们看来并不可靠。
这种思维差异曾导致项目停滞不前。最终,他们摸索出了一种合作模式,其核心是Greg所强调的“技术谦逊”(Technical Humility)。
“对于加入OpenAI的工程师,我总会说,你带着宝贵的技能而来,但这和传统的Web创业公司是完全不同的环境。最重要的事情是,带着谦逊的心态,去倾听、去理解,直到你真正明白‘为什么’。在那之后,你再去做出改变,重构架构,改进抽象。”
这种互相尊重、深度融合的伙伴关系,最终成为了OpenAI强大创新能力的基础。
发布幕后:从“心流编程”到AGI时代的开发新范式
1. 疯狂的发布日
无论是ChatGPT还是最新的GPT-4o,OpenAI的每次发布都像一场风暴。ChatGPT在5天内吸引了100万用户,而GPT-4o的图片生成功能更是在5天内吸引了1亿用户。
“我们原本以为ChatGPT需要等到GPT-4发布才能火起来,”Greg透露,“结果我们大大低估了用户们的热情。”
面对远超预期的流量,他们做出了一个艰难但必要的决定:从研究团队那里临时抽调大量算力来支持线上服务。“这相当于抵押了未来,”他说,“但如果你能让用户体验到魔法,这一切都是值得的。”
2. “心流编程”与未来
在GPT-4的发布会上,Greg现场演示了让模型根据一张手绘草图生成网站代码,这个“心流编程”(vibe coding)的时刻让世界第一次直观感受到了AI编程的魔力。(一个有趣的彩蛋是:那张草图是他妻子画的,因为他自己的字迹连AI都识别不了。)
他认为,“心流编程”只是一个开始,它代表着一种赋权。未来,AI编程将朝着更强大的“智能体”(Agentic)方向发展。我们不再只是与AI进行交互式编程,而是可以部署成千上万个AI智能体,像管理同事一样管理它们,让它们在云端自主完成任务。
3. AI如何重塑我们的编码方式?
在Greg看来,Codex等AI编程工具正在深刻地改变我们组织代码的方式。过去,我们的代码库是为人类的优势而设计的;未来,我们需要为模型的优势而设计。
这意味着:
- 更小的模块化:将代码拆分成更小、功能单一的模块。
- 完善的测试:编写可以被快速、频繁运行的测试用例。
- 清晰的文档:让模型能够理解每个模块的作用。
“这听起来就像是优秀的软件工程实践,对吧?”他说,“只是过去我们因为人力成本高而常常“偷懒”。现在,模型会比你多运行成千上万次测试,所以这些‘好习惯’变得前所未有的重要。” 从某种意义上说,我们应该像为初级开发者构建代码库一样,来最大化AI的效能。
4. 迎接AGI时代的开发新范式
NVIDIA创始人黄仁勋(Jensen Huang)也通过视频提出了一个问题:当AGI时代来临,开发者的工作流会发生怎样的变化?
Greg认为,未来不会是“一个无所不能的AI在天上”,而更像是一个**“由各种模型组成的大观园”(menagerie of different models)**。
- 一些是强大的基础模型。
- 另一些是通过蒸馏等技术优化而来、针对特定领域的小模型。
- 开发者需要构建工作流、数据飞轮来训练和管理这些领域专属的智能体。
“经济的本质是多样化的,”他强调,“AI的价值不在于简单地替代现有工作,而在于创造10倍的经济活动和人类福祉。无论是医疗、教育还是其他领域,都需要深厚的领域知识和大量细致的工作去构建。这为在座的每一位工程师都提供了无限的机会。”
访谈的最后,他看着满座的AI工程师,眼神里充满了期待和鼓励。
“这才是正确的能量。”
是的,这股能量,正是构建未来的动力。