本文翻译自 OpenAI Cookbook 的 Orchestrating Agents: Routines and Handoffs

Ilan Bigio

Oct 10, 2024

当使用语言模型时,通常只需要设计一个好的提示词并配合合适的工具,就能获得不错的效果。然而,当你需要处理许多不同的流程时,情况可能会变得复杂。本手册将介绍一种方法来应对这些复杂情况。

我们将引入“常规任务 (routine)”和“任务交接 (handoff)”的概念,并逐步展示如何实现这些功能,以及如何通过它们协调多个 AI 智能体 (agents),从而实现简单、强大且可控的系统。

最后,我们提供了一个示例仓库 Swarm,它实现了这些想法并附带了示例代码。

让我们从设置导入开始:

from openai import OpenAI
from pydantic import BaseModel
from typing import Optional
import json


client = OpenAI()

常规任务 (Routines)

“常规任务”这个概念没有严格的定义,主要用来表示一系列步骤。具体来说,我们可以将常规任务定义为一组用自然语言编写的指令 (我们通过系统提示词来实现),以及完成这些任务所需的工具。

让我们来看一个示例。下方代码定义了一个客户服务智能体的常规任务,指示它对用户问题进行分类,然后要么建议解决方案,要么提供退款。我们还定义了两个辅助函数 execute_refundlook_up_item。你可以把它称为客户服务常规任务、智能体或助手,但核心思想相同:一组步骤和执行这些步骤的工具。

# Customer Service Routine

system_message = (
    "You are a customer support agent for ACME Inc."
    "Always answer in a sentence or less."
    "Follow the following routine with the user:"
    "1. First, ask probing questions and understand the user's problem deeper.\n"
    " - unless the user has already provided a reason.\n"
    "2. Propose a fix (make one up).\n"
    "3. ONLY if not satesfied, offer a refund.\n"
    "4. If accepted, search for the ID and then execute refund."
    ""
)

def look_up_item(search_query):
    """Use to find item ID.
    Search query can be a description or keywords."""

    # return hard-coded item ID - in reality would be a lookup
    return "item_132612938"


def execute_refund(item_id, reason="not provided"):

    print("Summary:", item_id, reason) # lazy summary
    return "success"

常规任务的优势在于其简单性和稳健性。注意,这些指令包含类似状态机或代码分支的条件判断。大语言模型 (LLM) 实际上可以非常有效地处理小型和中型的常规任务,并且能够灵活调整对话,不会陷入死胡同。

执行常规任务

为了执行常规任务,我们可以实现一个简单的循环:

  1. 获取用户输入。
  2. 将用户消息添加到 messages 中。
  3. 调用模型。
  4. 将模型的回复添加到 messages 中。
def run_full_turn(system_message, messages):
    response = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[{"role": "system", "content": system_message}] + messages,
    )
    message = response.choices[0].message
    messages.append(message)

    if message.content: print("Assistant:", message.content)

    return message


messages = []
while True:
    user = input("User: ")
    messages.append({"role": "user", "content": user})

    run_full_turn(system_message, messages)

如你所见,当前的实现忽略了函数调用,因此我们需要添加该功能。

模型要求函数以函数模式 (function schema) 的形式传递。为了方便,我们可以定义一个辅助函数,将 Python 函数转换为相应的函数模式。

import inspect

def function_to_schema(func) -> dict:
    type_map = {
        str: "string",
        int: "integer",
        float: "number",
        bool: "boolean",
        list: "array",
        dict: "object",
        type(None): "null",
    }

    try:
        signature = inspect.signature(func)
    except ValueError as e:
        raise ValueError(
            f"Failed to get signature for function {func.__name__}: {str(e)}"
        )

    parameters = {}
    for param in signature.parameters.values():
        try:
            param_type = type_map.get(param.annotation, "string")
        except KeyError as e:
            raise KeyError(
                f"Unknown type annotation {param.annotation} for parameter {param.name}: {str(e)}"
            )
        parameters[param.name] = {"type": param_type}

    required = [
        param.name
        for param in signature.parameters.values()
        if param.default == inspect._empty
    ]

    return {
        "type": "function",
        "function": {
            "name": func.__name__,
            "description": (func.__doc__ or "").strip(),
            "parameters": {
                "type": "object",
                "properties": parameters,
                "required": required,
            },
        },
    }

例如:

def sample_function(param_1, param_2, the_third_one: int, some_optional="John Doe"):
    """
    This is my docstring. Call this function when you want.
    """
    print("Hello, world")

schema =  function_to_schema(sample_function)
print(json.dumps(schema, indent=2))
{
  "type": "function",
  "function": {
    "name": "sample_function",
    "description": "This is my docstring. Call this function when you want.",
    "parameters": {
      "type": "object",
      "properties": {
        "param_1": {
          "type": "string"
        },
        "param_2": {
          "type": "string"
        },
        "the_third_one": {
          "type": "integer"
        },
        "some_optional": {
          "type": "string"
        }
      },
      "required": [
        "param_1",
        "param_2",
        "the_third_one"
      ]
    }
  }
}

现在,当我们调用模型时,可以使用这个函数来传递工具。

messages = []

tools = [execute_refund, look_up_item]
tool_schemas = [function_to_schema(tool) for tool in tools]

response = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[{"role": "user", "content": "Look up the black boot."}],
            tools=tool_schemas,
        )
message = response.choices[0].message

message.tool_calls[0].function
Function(arguments='{"search_query":"black boot"}', name='look_up_item')

最后,当模型调用某个工具时,我们需要执行相应的函数并将结果反馈给模型。

我们可以通过将工具名称映射到 Python 函数的 tool_map 中来完成这一点,然后在 execute_tool_call 中查找并调用它。最后,将结果添加到对话中。

tools_map = {tool.__name__: tool for tool in tools}

def execute_tool_call(tool_call, tools_map):
    name = tool_call.function.name
    args = json.loads(tool_call.function.arguments)

    print(f"Assistant: {name}({args})")

    # call corresponding function with provided arguments
    return tools_map[name](**args)

for tool_call in message.tool_calls:
            result = execute_tool_call(tool_call, tools_map)

            # add result back to conversation 
            result_message = {
                "role": "tool",
                "tool_call_id": tool_call.id,
                "content": result,
            }
            messages.append(result_message)

实际上,我们还希望模型使用这个结果生成另一个回复。这个回复也可能包含工具调用,因此我们可以将其放入循环中,直到没有更多的工具调用为止。

如果将所有步骤组合在一起,它看起来会像这样:

tools = [execute_refund, look_up_item]


def run_full_turn(system_message, tools, messages):

    num_init_messages = len(messages)
    messages = messages.copy()

    while True:

        # turn python functions into tools and save a reverse map
        tool_schemas = [function_to_schema(tool) for tool in tools]
        tools_map = {tool.__name__: tool for tool in tools}

        # === 1. get openai completion ===
        response = client.chat.completions.create(
            model="gpt-4o-mini",
            messages=[{"role": "system", "content": system_message}] + messages,
            tools=tool_schemas or None,
        )
        message = response.choices[0].message
        messages.append(message)

        if message.content:  # print assistant response
            print("Assistant:", message.content)

        if not message.tool_calls:  # if finished handling tool calls, break
            break

        # === 2. handle tool calls ===

        for tool_call in message.tool_calls:
            result = execute_tool_call(tool_call, tools_map)

            result_message = {
                "role": "tool",
                "tool_call_id": tool_call.id,
                "content": result,
            }
            messages.append(result_message)

    # ==== 3. return new messages =====
    return messages[num_init_messages:]


def execute_tool_call(tool_call, tools_map):
    name = tool_call.function.name
    args = json.loads(tool_call.function.arguments)

    print(f"Assistant: {name}({args})")

    # call corresponding function with provided arguments
    return tools_map[name](**args)


messages = []
while True:
    user = input("User: ")
    messages.append({"role": "user", "content": user})

    new_messages = run_full_turn(system_message, tools, messages)
    messages.extend(new_messages)

现在我们有了一个常规任务,但假如我们想要增加更多步骤和工具,可以在一定程度上继续扩展。但当任务变得过多时,可能会导致系统无法应对。这时,我们可以利用多个常规任务的概念——根据用户的请求,加载适当的常规任务以及对应的工具和步骤来解决问题。

动态切换系统指令和工具可能看起来比较复杂。不过,如果我们将“常规任务”看作是“智能体”,那么“任务交接 (handoff)”这个概念就能帮助我们简化这种切换——就像一个智能体把对话转交给另一个智能体一样。

任务交接 (Handoffs)

任务交接指的是一个智能体 (或常规任务) 将当前的对话转交给另一个智能体,类似于电话转接的过程。不同的是,在这个例子中,智能体能够完整掌握之前的对话内容!

为了展示任务交接的实际操作,我们首先定义一个基本的智能体类:

class Agent(BaseModel):
    name: str = "Agent"
    model: str = "gpt-4o-mini"
    instructions: str = "You are a helpful Agent"
    tools: list = []

现在,为了支持这个功能,我们需要修改 run_full_turn 函数,使其接收一个 Agent 对象,而不是单独的 system_messagetools

def run_full_turn(agent, messages):

    num_init_messages = len(messages)
    messages = messages.copy()

    while True:

        # turn python functions into tools and save a reverse map
        tool_schemas = [function_to_schema(tool) for tool in agent.tools]
        tools_map = {tool.__name__: tool for tool in agent.tools}

        # === 1. get openai completion ===
        response = client.chat.completions.create(
            model=agent.model,
            messages=[{"role": "system", "content": agent.instructions}] + messages,
            tools=tool_schemas or None,
        )
        message = response.choices[0].message
        messages.append(message)

        if message.content:  # print assistant response
            print("Assistant:", message.content)

        if not message.tool_calls:  # if finished handling tool calls, break
            break

        # === 2. handle tool calls ===

        for tool_call in message.tool_calls:
            result = execute_tool_call(tool_call, tools_map)

            result_message = {
                "role": "tool",
                "tool_call_id": tool_call.id,
                "content": result,
            }
            messages.append(result_message)

    # ==== 3. return new messages =====
    return messages[num_init_messages:]


def execute_tool_call(tool_call, tools_map):
    name = tool_call.function.name
    args = json.loads(tool_call.function.arguments)

    print(f"Assistant: {name}({args})")

    # call corresponding function with provided arguments
    return tools_map[name](**args)

我们现在可以轻松运行多个智能体:

def execute_refund(item_name):
    return "success"

refund_agent = Agent(
    name="Refund Agent",
    instructions="You are a refund agent. Help the user with refunds.",
    tools=[execute_refund],
)

def place_order(item_name):
    return "success"

sales_assistant = Agent(
    name="Sales Assistant",
    instructions="You are a sales assistant. Sell the user a product.",
    tools=[place_order],
)


messages = []
user_query = "Place an order for a black boot."
print("User:", user_query)
messages.append({"role": "user", "content": user_query})

response = run_full_turn(sales_assistant, messages) # sales assistant
messages.extend(response)


user_query = "Actually, I want a refund." # implitly refers to the last item
print("User:", user_query)
messages.append({"role": "user", "content": user_query})
response = run_full_turn(refund_agent, messages) # refund agent
User: Place an order for a black boot.
Assistant: place_order({'item_name': 'black boot'})
Assistant: Your order for a black boot has been successfully placed! If you need anything else, feel free to ask!
User: Actually, I want a refund.
Assistant: execute_refund({'item_name': 'black boot'})
Assistant: Your refund for the black boot has been successfully processed. If you need further assistance, just let me know!

很棒!不过,当前的任务交接是手动实现的。我们希望智能体能够自主决定何时进行任务交接。一种简单但非常有效的方式是为智能体提供一个 transfer_to_XXX 函数,其中 XXX 是另一个智能体。模型足够智能,能够在合适的时机调用这个函数来进行任务交接!

任务交接函数

现在智能体可以表达交接的意图,接下来我们需要让交接真正发生。尽管有多种实现方法,但有一种特别简洁的方式。

对于我们已经定义的智能体函数,如 execute_refundplace_order,它们通常返回一个字符串,供模型使用。那么,如果我们让它返回一个 Agent 对象,表示需要切换到哪个智能体呢?例如:

refund_agent = Agent(
    name="Refund Agent",
    instructions="You are a refund agent. Help the user with refunds.",
    tools=[execute_refund],
)

def transfer_to_refunds():
    return refund_agent

sales_assistant = Agent(
    name="Sales Assistant",
    instructions="You are a sales assistant. Sell the user a product.",
    tools=[place_order],
)

然后我们可以更新代码,检查函数响应的返回类型。如果返回的是 Agent,那么就更新当前使用的智能体。此外,run_full_turn 现在还需要返回最新使用的智能体,以应对可能发生的任务交接。(我们可以通过 Response 类来保持代码整洁。)

class Response(BaseModel):
    agent: Optional[Agent]
    messages: list

更新后的 run_full_turn 看起来如下:

def run_full_turn(agent, messages):

    current_agent = agent
    num_init_messages = len(messages)
    messages = messages.copy()

    while True:

        # turn python functions into tools and save a reverse map
        tool_schemas = [function_to_schema(tool) for tool in current_agent.tools]
        tools = {tool.__name__: tool for tool in current_agent.tools}

        # === 1. get openai completion ===
        response = client.chat.completions.create(
            model=agent.model,
            messages=[{"role": "system", "content": current_agent.instructions}]
            + messages,
            tools=tool_schemas or None,
        )
        message = response.choices[0].message
        messages.append(message)

        if message.content:  # print agent response
            print(f"{current_agent.name}:", message.content)

        if not message.tool_calls:  # if finished handling tool calls, break
            break

        # === 2. handle tool calls ===

        for tool_call in message.tool_calls:
            result = execute_tool_call(tool_call, tools, current_agent.name)

            if type(result) is Agent:  # if agent transfer, update current agent
                current_agent = result
                result = (
                    f"Transfered to {current_agent.name}. Adopt persona immediately."
                )

            result_message = {
                "role": "tool",
                "tool_call_id": tool_call.id,
                "content": result,
            }
            messages.append(result_message)

    # ==== 3. return last agent used and new messages =====
    return Response(agent=current_agent, messages=messages[num_init_messages:])


def execute_tool_call(tool_call, tools, agent_name):
    name = tool_call.function.name
    args = json.loads(tool_call.function.arguments)

    print(f"{agent_name}:", f"{name}({args})")

    return tools[name](**args)  # call corresponding function with provided arguments

让我们来看一个包含更多智能体的示例:

def escalate_to_human(summary):
    """Only call this if explicitly asked to."""
    print("Escalating to human agent...")
    print("\n=== Escalation Report ===")
    print(f"Summary: {summary}")
    print("=========================\n")
    exit()


def transfer_to_sales_agent():
    """User for anything sales or buying related."""
    return sales_agent


def transfer_to_issues_and_repairs():
    """User for issues, repairs, or refunds."""
    return issues_and_repairs_agent


def transfer_back_to_triage():
    """Call this if the user brings up a topic outside of your purview,
    including escalating to human."""
    return triage_agent


triage_agent = Agent(
    name="Triage Agent",
    instructions=(
        "You are a customer service bot for ACME Inc. "
        "Introduce yourself. Always be very brief. "
        "Gather information to direct the customer to the right department. "
        "But make your questions subtle and natural."
    ),
    tools=[transfer_to_sales_agent, transfer_to_issues_and_repairs, escalate_to_human],
)


def execute_order(product, price: int):
    """Price should be in USD."""
    print("\n\n=== Order Summary ===")
    print(f"Product: {product}")
    print(f"Price: ${price}")
    print("=================\n")
    confirm = input("Confirm order? y/n: ").strip().lower()
    if confirm == "y":
        print("Order execution successful!")
        return "Success"
    else:
        print("Order cancelled!")
        return "User cancelled order."


sales_agent = Agent(
    name="Sales Agent",
    instructions=(
        "You are a sales agent for ACME Inc."
        "Always answer in a sentence or less."
        "Follow the following routine with the user:"
        "1. Ask them about any problems in their life related to catching roadrunners.\n"
        "2. Casually mention one of ACME's crazy made-up products can help.\n"
        " - Don't mention price.\n"
        "3. Once the user is bought in, drop a ridiculous price.\n"
        "4. Only after everything, and if the user says yes, "
        "tell them a crazy caveat and execute their order.\n"
        ""
    ),
    tools=[execute_order, transfer_back_to_triage],
)


def look_up_item(search_query):
    """Use to find item ID.
    Search query can be a description or keywords."""
    item_id = "item_132612938"
    print("Found item:", item_id)
    return item_id


def execute_refund(item_id, reason="not provided"):
    print("\n\n=== Refund Summary ===")
    print(f"Item ID: {item_id}")
    print(f"Reason: {reason}")
    print("=================\n")
    print("Refund execution successful!")
    return "success"


issues_and_repairs_agent = Agent(
    name="Issues and Repairs Agent",
    instructions=(
        "You are a customer support agent for ACME Inc."
        "Always answer in a sentence or less."
        "Follow the following routine with the user:"
        "1. First, ask probing questions and understand the user's problem deeper.\n"
        " - unless the user has already provided a reason.\n"
        "2. Propose a fix (make one up).\n"
        "3. ONLY if not satesfied, offer a refund.\n"
        "4. If accepted, search for the ID and then execute refund."
        ""
    ),
    tools=[execute_refund, look_up_item, transfer_back_to_triage],
)

最后,我们可以将该过程放入循环中运行 (这段代码无法在 Python notebooks 中运行,所以请在独立的 Python 文件中尝试):

agent = triage_agent
messages = []

while True:
    user = input("User: ")
    messages.append({"role": "user", "content": user})

    response = run_full_turn(agent, messages)
    agent = response.agent
    messages.extend(response.messages)

Swarm

作为概念验证,我们将这些想法打包成了一个示例库,称为 Swarm。这只是一个示例库,不应直接用于生产环境。不过,你可以参考其中的想法和代码来构建自己的系统!