2025 年 AI 展望 • Andrew Ng

本文展望了 2025 年人工智能(AI)的发展趋势和希望,通过多位领域专家的观点,探讨了 AI 在技术、应用和社会影响方面的潜力与挑战。 技术进步与应用前景 快速原型开发与生产力提升 AI 辅助编码显著降低了构建软件原型的成本与时间。例如,用 AI 构建教育工具或金融分析工具只需数小时。 平台如 Bolt 和 Replit Agent 不仅提高代码质量,还简化了应用的部署流程。 生成式 AI 的未来 创意与定制化:生成式 AI 将解放创作者的时间,使其专注于创造性工作。未来将出现更多小型、专用模型以满足特定需求。 多模态生成:结合视频、音频的生成模型将推动电影制作等领域的创新,例如同时生成视频和音轨的工具。 用户控制:未来的生成工具将提供更多控制选项,例如音乐的旋律、和声或视频的场景细节。 AI 通用性与代理型 AI 当前的 AI 系统已具备“通用性”,能够完成广泛任务并适应不同场景。 “代理型 AI”即具有执行具体任务能力的人工智能,将成为未来的核心,帮助用户完成日常任务并提升生产力。 数据效率与模型优化 当前 AI 模型依赖大规模数据,未来的重点是通过更高效的算法和架构减少数据需求。 数据效率的提升将解决模型的解释性、鲁棒性和多模态学习等问题,同时降低开发成本,促进技术民主化。 社会与文化影响 AI 的社会价值 AI 应优化推荐算法,优先展示“桥梁内容”,帮助不同群体找到共同点。 通过参与式方法(如 Polis 工具),AI 可以促进社会共识,减少偏见与分裂。 安全与责任 生成式 AI 的部署需要高标准的安全性和责任感,特别是在“代理型 AI”执行任务时。 减少“幻觉”问题(即 AI 输出错误信息)是 2025 年的关键任务,未来 AI 将比搜索引擎更可靠。 教育与学习的变革 AI 正在改变学习方式,例如生成个性化的考试题目或重新解释课程内容。2025 年,AI 可能成为人们首选的学习助手。 社会团结与治理 AI 平台需嵌入社会价值指标(如促进建设性对话),以推动民主和社会和谐。 开发和治理 AI 的过程中,应广泛吸纳多元声音,确保技术公平性与包容性。 通过技术创新与社会责任的结合,2025 年的 AI 发展将不仅推动生产力和创造力,还可能重塑人与人之间的互动方式,成为促进社会进步的重要力量。...

January 8, 2025 · 3 min · fisherdaddy

2024年顶级 AI 故事!AI 智能体崛起,价格下跌,模型缩小,以及更多 • Andrew Ng

本文是吴恩达对 2024年 AI 的总结。2024 年是人工智能(AI)领域快速发展的一年,技术和应用均取得了显著进步。AI 模型变得更快、更便宜、更小,且多模态和推理能力更强。AI 应用的普及速度超过了技术本身的发展,特别是在自动化、客户服务和问答等领域。与此同时,生成式视频、代理系统(agentic systems)和小型模型成为焦点,价格战加剧了竞争,技术巨头通过创新合作模式获取技术和人才。 关键细节 1. 代理系统崛起 发展概况:代理系统(agentic systems)通过迭代提示大语言模型(LLMs),显著提升了任务执行能力。多个工具和框架支持代理工作流,例如: 微软 Autogen 和后续衍生的 AG2。 CrewAI 提供多代理系统的开源框架。 LangChain 的 LangGraph 通过循环图优化代理行为。 Meta 的 Llama Stack 提供记忆、对话和道德约束。 技术进步:新技术如链式思维(Chain of Thought)、自我一致性(Self-consistency)和反思机制(Reflexion)推动了代理 AI 的发展。 现状:代理系统已成为主流,显著提高了 AI 的效率和个性化服务能力。 2. 价格下降 价格战:从 2023 年 3 月到 2024 年 11 月,OpenAI 的模型使用价格下降了近 90%。其他公司如 Google、Meta、亚马逊和中国企业也纷纷降价。 开源模型的影响:Meta 的 Llama 3 和 3.1 系列显著降低了高性能模型的价格门槛。 闭源模型竞争:OpenAI 推出更便宜的 GPT-4o 和 mini 版本,Google 降价 Gemini 系列,亚马逊推出 Nova 系列以低价竞争。 背后原因:开源模型和更高效的计算硬件(如 Cerebrus 和 SambaNova)推动了价格下降。 意义:价格下降反映了健康的技术生态,但高需求模型仍维持较高价格。 3....

January 6, 2025 · 5 min · fisherdaddy

如何通过代理提升大语言模型的性能 • Andrew Ng

前段时间看了 Andrew Ng 在红杉组织的AI Ascent 2024 主题活动中的演讲视频,今天正好在 DeepLearning.AI 官方也看到了相关内容,就索性翻译了一下。 我认为,今年 AI agent 的 workflows 将大大推动 AI 的进步,其影响甚至可能超过下一代基础模型的发展。这是一个不容忽视的趋势,我强烈建议所有 AI 领域的工作者都应该重视起来。 目前,我们主要是在零样本模式下使用大语言模型(LLM),即直接提示模型一步步生成最终输出,不进行任何修改。这好比让某人一气呵成地写完一篇文章,不允许回退修改,期望其能写出高质量的作品。尽管这样做颇具挑战,但大语言模型在这方面的表现出奇的好! 然而,通过采用 AI 代理的工作流程,我们可以让 LLM 多次迭代文档。例如,它可能会执行以下一系列步骤: 规划提纲。 确定是否需要进行网络搜索来收集更多信息。 撰写初稿。 复审初稿,寻找不合理的论点或无关的信息。 针对发现的问题修改草稿。 诸如此类的其他步骤。 这种迭代过程是大多数人类写作者撰写优质文本的关键。对于 AI 来说,采用这种迭代的工作流程比一次性完成整篇文章能带来更好的结果。 近期,Devin 的一次引人注目的演示在社交媒体上引发了广泛关注。我们团队一直紧密跟踪代码编写 AI 的发展。我们分析了多个研究团队的成果,重点关注算法在广泛使用的 HumanEval 编码基准上的表现。您可以在下方的图表中看到我们的发现。 GPT-3.5 在零样本模式下的正确率为 48.1%,而 GPT-4 的表现更佳,达到了 67.0%。然而,从 GPT-3.5 到 GPT-4 的进步与采用迭代代理工作流程的提升相比则显得微不足道。实际上,在代理循环的加持下,GPT-3.5 的表现提升至高达 95.1%。 开源代理工具和代理相关的学术文献正迅速增加,这既是一个令人兴奋的时刻,也是一个令人困惑的时期。为了帮助大家更好地理解这项工作,我想分享一个框架,用于对构建代理的设计模式进行分类。我的团队 AI Fund 在许多应用中成功采用了这些模式,我希望它们对你也有帮助。 反思:LLM 审视自己的工作,并提出改进方案。 工具使用:LLM 被赋予工具,比如网络搜索、代码执行等,以帮助其收集信息、采取行动或处理数据。 规划:LLM 设计并执行一个多步骤计划来实现目标(比如,为一篇文章制定提纲,接着进行在线研究,然后撰写草稿等等)。 多代理合作:多个 AI 代理合作,分担任务,讨论和辩论观点,以提出比单一代理更好的解决方案。 反思 也许你曾这样体验过:你向 ChatGPT 、 Claude 或 Gemini 提出请求,结果不尽如人意。之后,你给出关键反馈,帮助模型优化答案,然后它给出了更好的回应。如果我们将提供关键反馈的步骤自动化,让模型能自我批评并优化输出呢?这正是“反思”模式的核心所在。...

April 8, 2024 · 1 min · fisherdaddy