Character.AI 的提示词设计
在 Character.AI,掌握提示工程的艺术和科学至关重要。随着每日生成数十亿个提示,采用一种强大且可扩展的提示设计方法显得尤为必要。本文作者提倡从传统的“提示工程”转向“提示设计”,通过开发 Prompt Poet 工具,使开发者和非技术用户能够更高效地设计和管理提示,提升用户与 AI 模型的交互质量。 提示设计的重要性:构建有效的提示需要考虑多种因素,包括对话模式、实验、角色、用户属性、记忆和整个对话历史等。随着 LLM(大语言模型)上下文窗口的扩大,提升提示设计的效率显得尤为重要。 Prompt Poet 工具:该工具结合了 Python 的 f-strings 和 YAML,使提示的设计和管理更加灵活和易于使用。Prompt Poet 允许用户在不编写代码的情况下高效创建和迭代提示模板,节省了大量的字符串操作时间。 模板处理过程:提示模板的处理分为两个主要阶段: 渲染:使用 Jinja2 处理输入数据,执行控制流逻辑并验证数据。 加载:输出为结构化的 YAML 文件,便于管理和使用。 示例模板:提供了基本的问答机器人模板,展示了如何使用 Jinja2 语法和 YAML 结构来创建灵活的提示。 上下文长度管理:通过设置截断优先级,Prompt Poet 可以有效管理对话历史,确保在上下文长度受限时保留重要信息。 设计选择:Prompt Poet 库提供了多种功能,包括提示属性的设置、令牌化和截断等,优化了响应的效率和延迟。 结论:Prompt Poet 代表了提示工程的重大进步,简化了复杂和个性化提示的创建过程,使开发者和用户能够更专注于提示设计,推动 AI 交互的高效和直观化。 Character.AI 的提示词设计 作者: James Groeneveld Github: https://github.com/character-ai/prompt-poet PyPi: https://pypi.org/project/prompt-poet/ 在 Character.AI,掌握 Prompt Engineering(提示工程)的艺术和科学至关重要。构建生产环境中的提示需要考虑大量数据和因素:当前对话模式、正在进行的实验、涉及的角色、聊天类型、各种用户属性、固定记忆、用户角色和整个对话历史等。我们每天生成数十亿个提示,需要充分利用不断扩展的大语言模型 (LLM) 上下文窗口,并且我们的使用场景非常多样化,因此需要一种强大且可扩展的提示设计方法。我们主张从传统的“提示工程”转向“提示设计”,从繁琐的字符串操作转变为设计精确、引人入胜的提示。这篇文章介绍了我们开发的 Prompt Poet,它是我们为此目的开发的工具。 简要概述 Python 的 f-strings(及其封装)现在是提示工程师的行业标准。使用 f-strings 可以简单到将用户查询直接插入到字符串中,但也可能变得非常复杂,涉及大量手动字符串操作来创建最终提示。这也使得提示的迭代对于非技术人员来说不太友好,因为需要编写代码。 我们认为可以有更好的方法。因此,我们开发了 Prompt Poet (Github / PyPi),一个允许开发者和非技术用户高效设计和管理生产提示的工具。它节省了在字符串操作上的工程时间,让大家能更专注于为用户打造最佳提示。...