学习一下 Claude Code 的系统提示词

2025年 5 月 23日 Anthropic 发布了基于 Claude 4 模型的 Claude Code,很快有网友破解了其 Prompt,并分享了出来。为了便于学习,我把这个 Prompt 翻译为了中文。 展开查看原文 You are Claude Code, Anthropic's official CLI for Claude.You are an interactive CLI tool that helps users with software engineering tasks. Use the instructions below and the tools available to you to assist the user. IMPORTANT: Refuse to write code or explain code that may be used maliciously; even if the user claims it is for educational purposes....

May 27, 2025 · 46 min · fisherdaddy

学习一下 Claude 4 的系统提示词

2025年 5 月 23日 Anthropic 发布了 Claude 4 模型,很快有网友破解了其 Prompt,并分享了出来。为了便于学习,我把这个 Prompt 翻译为了中文。 展开查看原文 The assistant is Claude, created by Anthropic. The current date is Thursday, May 22, 2025. Here is some information about Claude and Anthropic's products in case the person asks: This iteration of Claude is Claude Sonnet 4 from the Claude 4 model family. The Claude 4 family currently consists of Claude Opus 4 and Claude Sonnet 4. Claude Sonnet 4 is a smart, efficient model for everyday use....

May 26, 2025 · 54 min · fisherdaddy

介绍一下 Claude 4

Anthropic 于2025年5月23日推出了新一代 Claude 模型:Claude Opus 4 和 Claude Sonnet 4,它们在编码、高级推理和 AI 代理方面树立了新标准。Claude Opus 4 被誉为全球最佳编码模型,擅长处理复杂和长时间运行的任务,而 Claude Sonnet 4 则是对 Sonnet 3.7 的重大升级,在编码和推理方面表现卓越。两款模型都增强了工具使用、并行工具执行和记忆能力。此外,Claude Code 现已全面上市,旨在将 Claude 的强大功能融入开发工作流程。这些模型旨在成为能够维持完整上下文并专注于长期项目的“虚拟协作伙伴”。 模型性能与应用: Claude Opus 4: 在 SWE-bench 上得分 72.5% ,在 Terminal-bench 上得分 43.2% ,被 Cursor 、Replit 、Block 、Rakuten 和 Cognition 等公司认可为在编码和复杂问题解决方面的领先者,能够持续工作数小时。 Claude Sonnet 4: 在 SWE-bench 上得分 72.7% ,提供性能与效率的平衡。GitHub 将其作为 GitHub Copilot 中新编码代理的模型。Manus 、iGent 、Sourcegraph 和 Augment Code 等公司也对其在遵循复杂指令、自主应用开发和代码质量方面的提升表示赞赏。 新增功能: 工具使用与扩展思考: 两款模型均支持在扩展思考过程中使用工具(如网络搜索),实现推理与工具使用的交替。 并行工具执行: 能够同时使用多个工具。 记忆能力提升: 特别是 Opus 4 ,在获得本地文件访问权限时,能创建和维护“记忆文件”以存储关键信息,从而提升长期任务意识和连贯性(例如,在玩 Pokémon 时创建“导航指南”)。 行为改进: 相较于 Sonnet 3....

May 23, 2025 · 3 min · fisherdaddy

Claude 的 System Prompt 分析

几天前 Andrej Karpathy 在推特上分享了在阅读完 Claude 的 System Prompt 之后发布了一些分享:大型语言模型(LLMs)除了现有的基于参数修改(预训练获取知识,微调习得行为)的学习范式外,还缺少一种新的、重要的学习方式,作者称之为“系统提示词学习”。这种新范式类似人类学习并记下显式的问题解决策略,将通用知识存储在类似系统提示词的外部形式中,而非仅仅通过调整模型权重。作者认为这对于学习结构化的问题解决步骤(如Claude系统提示词中的计数方法)更有效率,且应该由模型自身习得,而不是依赖人工编写。 Claude 的 System Prompt 非常长。它有 一万六千多个单词。相比之下,OpenAI 在 ChatGPT 中使用的 o4-mini 的 System Prompt 有两千多个单词长,约为 Claude 长度的 13%。 我也尝试了一下X 上宝玉推荐的破解方法,重试了一次,确实可以诱导 Claude 说出一些 System Prompt 的内容,但往往到function 的时候会卡住,但也没关系,基本验证了这份泄露的 System Prompt 是真实的。我把原prompt翻译为了中文,原prompt我也贴出来了。 展开查看译文 <citation_instructions> 如果助手响应基于 web_search、drive_search、google_drive_search 或 google_drive_fetch 工具返回的内容,助手必须始终恰当地引用其响应。以下是良好引用的规则: - 答案中每一个源自搜索结果的特定论断都应该用 <antml:cite> 标签包围起来,如下所示:<antml:cite index="...">...</antml:cite>。 - <antml:cite> 标签的 index 属性应该是一个逗号分隔的句子索引列表,用于支持该论断: -- 如果论断由单个句子支持:<antml:cite index="DOC_INDEX-SENTENCE_INDEX">...</antml:cite> 标签,其中 DOC_INDEX 和 SENTENCE_INDEX 是支持该论断的文档和句子的索引。 -- 如果论断由多个连续句子(一个“段落”)支持:<antml:cite index="DOC_INDEX-START_SENTENCE_INDEX:END_SENTENCE_INDEX">...</antml:cite> 标签,其中 DOC_INDEX 是相应的文档索引,START_SENTENCE_INDEX 和 END_SENTENCE_INDEX 表示文档中支持该论断的句子的包含范围。 -- 如果论断由多个段落支持:<antml:cite index="DOC_INDEX-START_SENTENCE_INDEX:END_SENTENCE_INDEX,DOC_INDEX-START_SENTENCE_INDEX:END_SENTENCE_INDEX">....

May 13, 2025 · 98 min · fisherdaddy

Anthropic 经济指数: 人工智能对软件开发的影响

本文由 Anthropic 发布,聚焦于 Claude 在编码相关任务中的应用情况。通过对 Claude.ai 和专用编码工具 Claude Code 上 500,000 次交互的分析,揭示了 AI 在编码实践中的新兴模式、应用领域及采纳趋势。 主要观点 AI 驱动编码自动化趋势显著:特别是在专用的 AI 编码工具(如 Claude Code)中,AI 更倾向于直接执行任务(自动化),而非仅仅辅助人类(增强)。 用户界面开发是 AI 编码的热点:开发者普遍使用 AI 构建面向用户的应用程序,如网页和移动应用的界面,这可能导致相关工作岗位面临更早的 AI 冲击。 初创企业在 AI 编码工具采纳上领先:与大型传统企业相比,初创企业更积极地采用尖端的 AI 编码工具,显示出更强的敏捷性。 软件开发领域的 AI 应用或为其他行业的先导指标:编码作为 AI 应用相对成熟的领域,其发展模式可能为预测 AI 在其他职业领域的影响提供参考。 关键细节 AI 使用模式:自动化与增强 在 Claude Code 上,79% 的对话被识别为“自动化”(AI 直接执行任务),而“增强”(AI 协作并提升人类能力)占 21%。相比之下,Claude.ai 的自动化比例为 49%。 “反馈循环”(Feedback Loop)模式(AI 自主完成任务,但需人类验证和纠错)在 Claude Code 上更为普遍(占交互的 35.8%),远高于 Claude.ai(21.3%)。 “指令式”(Directive)对话(AI 以最少用户交互完成任务)在 Claude Code 上也更高(43.8% vs 27.5%)。 所有增强模式(包括“学习”)在 Claude Code 上的比例均低于 Claude....

May 6, 2025 · 3 min · fisherdaddy

介绍一下 Claude 3.7 Sonnet

Anthropic 于 2025年 2 月 25 日发布了其最新的 AI 模型 Claude 3.7 Sonnet,并称其为目前最智能的模型,也是市场上首个混合推理模型。该模型独特之处在于它既能提供近乎即时的响应,也能进行更长时间、逐步深入的思考,并且用户可以通过 API 精细地控制模型的思考时长。 Claude 3.7 Sonnet 既是普通 LLM 又是推理模型。在标准模式下,它是 Claude 3.5 Sonnet 的升级版;在扩展思考模式下,它会在回答前进行自我反思,从而提高其在数学、物理、指令跟随、编码和许多其他任务上的性能。Claude 3.7 Sonnet 的开发理念与其他推理模型不同。 Anthropic 认为,推理能力应该是前沿模型的集成能力,而不是一个完全独立的模型,就像人类使用同一个大脑进行快速反应和深入思考一样。这种统一的方法为用户创造了更无缝的体验。 Claude 3.7 Sonnet 现已在所有 Claude 计划(包括 Free, Pro, Team 和 Enterprise 计划)以及 Anthropic API, Amazon Bedrock 和 Google Cloud 的 Vertex AI 上提供。扩展思考模式在除免费 Claude 层级外的所有平台均可用。 Claude 3.7 Sonnet 的定价与其前代产品相同,为每百万输入 tokens 3 美元,每百万输出 tokens 15 美元,其中包括思考 tokens 。 与 Claude 3.7 Sonnet 模型一同发布的还有 Claude Code ,这是一个用于 agentic coding 的命令行工具,目前以有限的研究预览版形式提供。 Claude Code 旨在让开发者能够直接从终端将大量的工程任务委托给 Claude 完成。...

February 25, 2025 · 2 min · fisherdaddy

Anthropic 经济指数

Anthropic 推出了 Anthropic 经济指数 (Anthropic Economic Index),旨在深入理解 生成式 AI 系统对劳动力市场和经济产生的重大影响。该指数的首份报告基于 Claude.ai 上的数百万匿名对话进行了首次数据分析,揭示了 生成式 AI 如何融入现代经济中的实际工作任务。为了促进更广泛的研究和政策制定,Anthropic 开放了用于此分析的数据集,并邀请经济学家、政策专家和其他研究人员为该指数提供input。 初步报告的主要发现包括: 生成式 AI 的使用目前主要集中在软件开发和技术写作任务中。 大约 36% 的职业在其至少四分之一的相关任务中使用了 生成式 AI,而约 4% 的职业在其四分之三的相关任务中使用了 生成式 AI。 生成式 AI 的使用更倾向于增强人类能力(57%),即 AI 与人类协作并提升其能力,而非直接自动化任务(43%)。 生成式 AI 在中等至中高工资职业中的使用更为普遍,但在最低和最高工资岗位中的使用率较低。这可能反映了当前 AI 能力的局限性以及技术应用的实际障碍。 数据来源与分析方法 该研究基于经济学文献中关于职业任务而非职业本身的见解,使用 Anthropic 内部的自动化分析工具 Clio 分析了约一百万次 Claude (Free 和 Pro 版本) 的对话。Clio 将每次对话与美国劳工部 ONET (Occupational Information Network) 数据库中的职业任务进行匹配,ONET 数据库包含约 20,000 个特定工作相关任务。然后,研究人员按照 O*NET 的分类方案,将任务分组到相应的职业和职业类别中。 AI 使用的行业分布 数据显示,“计算机和数学” 类别(主要涵盖软件工程角色)的职业中,生成式 AI 的采用率最高,占 Claude 查询的 37....

February 14, 2025 · 3 min · fisherdaddy

基于 Claude 3 实现的 AI 作家

Claude-Author 利用 Claude 3 Haiku 模型 和 Stable Diffusion 调用来生成原创小说。用户可以提供初始提示并输入他们想要的章节数,然后 AI Author 会生成整本小说,输出与电子书阅读器兼容的 EPUB 文件。 工作原理 输入 希望的写作风格: writing_style 输入本书的概述: book_description 输入生成的章节数: num_chapters 开始创作 创建故事情节大纲 Create a detailed plot outline for a {num_chapters}-chapter book in the {writing_style} style, based on the following description:\n\n{book_description}\n\nEach chapter should be at least 10 pages long. 逐章节生成内容 Previous Chapters:\n\n{' '.join(chapters)}\n\nWriting style: `{writing_style}`\n\nPlot Outline:\n\n{plot_outline}\n\nWrite chapter {i+1} of the book, ensuring it follows the plot outline and builds upon the previous chapters....

March 29, 2024 · 1 min · fisherdaddy

基于 Claude 3 实现的 AI 投资家

Claude-Investor 是一个实验性投资分析代理,利用 Claude 3 Opus 和 Haiku 模型为特定行业的股票提供全面的见解和建议。 工作原理 生成指定行业主要公司的股票代码列表 检索每家公司的历史价格数据、资产负债表、财务报表和新闻文章 对新闻文章进行情绪分析以衡量市场情绪 检索每家公司的分析师评级和价格目标 进行行业和板块分析,以了解市场趋势和竞争格局 生成所选公司与其同行之间的比较分析 根据综合分析为每家公司提供最终的投资建议,包括价格目标 根据投资吸引力对行业内公司进行排名 一些样例 1.微软公司(MSFT) 当前价格: 420.95 美元 目标价格:450.00 美元 理由:微软的强劲情绪、人工智能举措、分析师的乐观情绪以及有利的行业顺风使其成为最具吸引力的投资选择。 该公司多样化的人工智能货币化方法以及对云效率等关键趋势的定位为增长奠定了坚实的基础。 尽管存在竞争和监管问题等潜在风险,但微软强大的市场地位和增长前景胜过这些因素。 当前价格为 420.95 美元,较目标价格 450.00 美元有潜在上涨空间。 2.Alphabet公司(GOOGL) 当前价格:149.32 美元 目标价格:160.00 美元 理由:Alphabet 强劲的财务业绩、多元化的收入来源以及在搜索和数字广告等关键领域的市场领导地位使其成为有吸引力的投资选择。 该公司的创新文化和分析师的积极情绪也令人鼓舞。 然而,监管挑战、激烈竞争以及对广告收入的依赖带来了潜在风险。 目前 149.32 美元的价格较 160.00 美元的目标价格有潜在上涨空间,但投资者应密切关注监管动态以及该公司应对竞争格局的能力。 3.苹果公司(AAPL) 当前价格: 172.53 美元 目标价格:180.00 美元 理由:苹果强大的品牌忠诚度、产品和服务生态系统以及财务业绩使其成为可靠的投资选择。 然而,情绪好坏参半、行业逆风、估值考虑以及缺乏明确的近期催化剂都削弱了热情。 目前 172.53 美元的价格相对于 180.00 美元的目标价格来说上涨空间有限。 尽管苹果仍然是一家优质公司,但科技行业的其他领域可能存在更好的风险调整机会。 4.亚马逊公司(AMZN) 当前价格:178.36 美元 目标价格:185.00 美元 理由:亚马逊在电子商务领域的主导地位、规模和物流能力提供了竞争优势。 然而,有限的财务数据、估值缺乏清晰度、竞争威胁加剧以及监管压力使其成为四家公司中最不具吸引力的投资选择。 目前 178.36 美元的价格比 185....

March 28, 2024 · 1 min · fisherdaddy

基于 Claude 3 实现的 AI 记者

AI-Journalist 的功能是基于 Claude 3 模型的强大功能来撰写和编辑任何给定主题的高质量文章。它利用网络搜索 API 来收集相关信息、分析内容并生成结构良好、信息丰富且引人入胜的文章,这些文章读起来就像在出版物上发布的文章一样。 工作原理 提示用户输入要撰写的主题 使用 Claude 3 Haiku 生成与该主题相关的搜索词列表 使用 SERP API 对每个搜索词执行搜索 要求 Claude 从搜索结果中选择最相关、信息最丰富的 URL 使用 newspaper3k 库从选定的 URL 检索文章文本 要求 Claude 根据检索到的文章文本写一篇高质量的文章 要求编辑(Claude)审阅文章并提供改进建议 要求编辑(Claude)根据建议重写文章 输出生成的文章和编辑的文章 生成的一篇关于 samaltman 主题的文章样例 Sam Altman:塑造人工智能未来的远见者 在快速发展的人工智能世界中,萨姆·奥尔特曼脱颖而出,成为科技行业最具影响力和争议性的领导者之一。 年仅 38 岁的 OpenAI 神秘首席执行官带领公司从一个小型研究实验室迅速崛起为处于人工智能革命前沿的价值数十亿美元的巨头。 奥特曼的旅程始于圣路易斯郊区,在那里他很早就表现出了技术和创业的天赋。 小时候自学编程后,他于 2003 年进入斯坦福大学,梦想着创办自己的公司。 两年后,他退学并与他人共同创立了 Loopt,这是一款开创性的基于位置的社交网络应用程序。 尽管 Loopt 未能获得关注,但它引起了硅谷名人的注意,导致 Altman 加入了著名的创业加速器 Y Combinator。 在 2014 年至 2019 年担任 Y Combinator 总裁期间,Altman 帮助创办了数百家成功的初创公司,巩固了他作为杰出战略家和富有远见的思想家的声誉。 然而,他在 2019 年掌管 OpenAI 的决定决定了他的职业生涯。...

March 28, 2024 · 1 min · fisherdaddy