大型语言模型如何工作。从 0 到 ChatGPT • Andreas Stöffelbauer

本文由微软数据科学家 Andreas Stöffelbauer 撰写,旨在以直观的方式解释大型语言模型(Large Language Models, LLMs)的工作原理,从基础的机器学习概念到 ChatGPT 的核心机制,帮助读者理解 LLMs 的训练过程、能力以及应用场景。作者通过分层讲解人工智能、机器学习、深度学习和 LLMs 的发展路径,揭示了这些模型如何从大规模数据中学习语言规律,并通过生成式方法实现自然语言处理任务。文章还探讨了 LLMs 的局限性(如“幻觉”现象)及其在未来改进的潜力。 关键细节 1. 人工智能的层次结构 人工智能 (AI):涵盖所有智能机器的研究。 机器学习 (ML):AI 的子领域,专注于从数据中发现模式。 深度学习 (DL):机器学习的分支,处理非结构化数据(如文本、图像),依赖人工神经网络。 大型语言模型 (LLMs):深度学习的应用,专注于文本数据处理。 2. 机器学习基础 核心目标:发现输入与输出之间的模式关系。 分类任务:如音乐流派分类,基于输入特征(如节奏和能量)预测输出类别。 复杂性提升:输入变量数量、类别数量的增加使模型复杂度上升,需要更强大的模型和更多数据。 3. 深度学习与神经网络 神经网络:模仿人脑结构,由多层神经元组成,能够建模高度非线性关系。 深度学习:通过多层神经网络处理复杂任务,如图像分类和情感分析。 规模化的突破:现代 LLMs(如 GPT-4)拥有数十亿到上万亿参数,能够处理极其复杂的输入输出关系。 4. 大型语言模型的核心机制 语言建模:通过预测下一词,学习语言的语法、语义和上下文关系。 训练数据:基于大量文本数据进行自监督学习,无需人工标注。 生成式 AI:通过逐词生成文本,实现自然语言生成。 5. ChatGPT 的三阶段训练 预训练:使用大规模文本数据训练模型预测下一词,掌握语言规则和世界知识。 指令微调:通过高质量的指令-响应对,训练模型理解并响应用户指令。 人类反馈强化学习 (RLHF):优化模型输出,使其更符合人类价值和偏好。 6. LLMs 的应用与能力 文本生成:通过逐词预测生成连贯的文本。 任务解决: 零样本学习 (Zero-shot):无需示例即可完成新任务。 Few-shot 学习:通过提供少量示例提升任务表现。 链式思维 (Chain-of-thought):逐步推理解决复杂问题。 幻觉问题:LLMs 有时会生成错误信息,因其训练目标并非事实准确性。 7. LLMs 的未来与局限 潜在问题:幻觉现象、知识更新滞后、对真伪信息的区分能力不足。 改进方向:通过上下文补充、搜索引擎集成(如 Bing Chat)等方法增强模型的准确性和实时性。 发展潜力:LLMs 展现了超越训练数据的新兴能力(如零样本任务),未来可能进一步接近通用人工智能。 8....

January 7, 2025 · 3 min · fisherdaddy