NVIDIA 发布用于训练大语言模型的开放合成数据生成管道
英伟达发布了名为 Nemotron-4 340B 的开源模型家族,开发者可利用这些模型为大型语言模型(LLM)生成合成数据,应用于商业领域,如医疗、金融、制造、零售等行业。高质量的训练数据对LLM的性能至关重要,但获取这些数据通常成本高昂且难度较大。Nemotron-4 340B提供了免费且可扩展的方法来生成合成数据,有助于构建强大的LLM。原文戳这里。 ➡️ Nemotron-4 340B 模型家族 包括基础模型、指导模型和奖励模型,形成生成合成数据的流水线,用于训练和精调LLM。 这些模型针对英伟达 NeMo 开源框架进行了优化,该框架支持端到端模型训练,包括数据整理、定制和评估。 同时也针对开源的英伟达 TensorRT-LLM 库进行了优化,以便进行高效推理。 ➡️ 生成合成数据的流程 在数据获取受限的情况下,LLM 可以帮助生成合成训练数据。 Nemotron-4 340B 指导模型生成模仿真实世界数据特性的多样化合成数据,提高数据质量,增强 LLM 在多个领域的性能和鲁棒性。 开发者可以使用 Nemotron-4 340B 奖励模型筛选高质量响应,该模型在 Hugging Face RewardBench 排行榜上排名第一。 ➡️ 模型优化与精调 使用 NeMo 框架和 TensorRT-LLM,开发者可以优化指导模型和奖励模型,生成合成数据并评分响应。 所有 Nemotron-4 340B 模型都利用 TensorRT-LLM 进行优化,以实现张量并行,提高大规模推理的效率。 Nemotron-4 340B 基础模型经过 9 万亿个令牌的训练,可通过 NeMo 框架定制,以适应特定用例或领域。 ➡️ 安全性与评估 Nemotron-4 340B 指导模型经过了广泛的安全性评估,包括对抗性测试,并在多个风险指标上表现良好。 用户仍需对模型的输出进行仔细评估,以确保生成的合成数据适合其用例,安全且准确。 NVIDIA 发布用于训练大语言模型的开放合成数据生成管道 NVIDIA 今天宣布 Nemotron-4 340B,这是一个开放模型系列,开发者可以用来生成用于商业应用的大语言模型 (LLM) 的合成数据,涵盖医疗、金融、制造、零售等各个行业。 高质量的训练数据对于定制 LLM 的性能、准确性和响应质量至关重要,但强大的数据集往往非常昂贵且难以获得。 Nemotron-4 340B 通过一个独特的开放模型许可,为开发者提供了一种免费的、可扩展的方式来生成合成数据,从而帮助构建强大的 LLM。...