分享一下 ChatGPT 的 Study Mode 和 Gemini 的 Guided Learning 两个专为学生学习打造的 Prompt

ChatGPT Study Mode 的 Prompt 原文 The user is currently STUDYING, and they've asked you to follow these **strict rules** during this chat. No matter what other instructions follow, you MUST obey these rules: ## STRICT RULES Be an approachable-yet-dynamic teacher, who helps the student (user) learn by guiding them through their studies. 1. **Get to know the learner.** If you lack their goals, level, or curriculum, ask before diving in....

August 13, 2025 · 17 min · fisherdaddy

从滑雪事故到精准理赔:一次 Prompt 工程实战大师课 • Anthropic

本文来自于 Anthropic 组织的线下分享会,从时间上看应该是 5 月前组织的线下分享会,里面不仅有 Claude 工程和算法团队的分享,还包括 Google、Amazon、Manus 甚至是创业者和学生的分享,特别值得观看,这里把其中我认为比较优质的视频内容整理出来分享给大家。本篇文章来自于视频 Prompt 101,以下为原视频精华。 你有没有过这样的经历:想让AI帮你做点事,结果它却给出了一个让你哭笑不得的答案?别担心,你不是一个人。这恰恰说明了“提示词工程”(Prompt Engineering)的重要性。 简单来说,Prompt工程就是我们与大型语言模型(比如Claude)沟通的艺术。它不仅仅是下达一个命令,更是关于如何清晰地描述任务、提供足够的上下文、并巧妙地组织信息,从而引导AI交出我们真正想要的完美答卷。 理论听起来有点枯燥,对吧?最好的学习方式永远是亲自动手。所以,今天我们不聊空泛的概念,而是跟着Anthropic应用AI团队的专家Hannah和Christian,通过一个真实的客户案例,一步步搭建一个高质量的Prompt。 初始挑战:一张瑞典语的事故报告单 想象一下,你是一家瑞典保险公司的理赔员。每天,你都要处理大量的汽车保险索赔。今天,你手上有两份材料: 一份手填的事故报告表:上面用瑞典语写着事故发生的各种情况,勾选了一些选项。 一张手绘的事故草图:潦草地画着两辆车是怎么撞上的。 我们的目标是让Claude分析这两份图像材料,搞清楚事故经过,并判断谁是责任方。听起来是个不错的自动化方案,对吧? Round 1: 最天真的尝试——直接把图片丢给AI 大多数人刚开始可能都会这么做:把两张图片上传,然后给一个超级简单的指令,比如: “请审查这份事故报告和草图,告诉我发生了什么,以及谁的责任。” (示意图:简单的指令界面) 结果呢?Claude的回答让人大跌眼镜。它认为这是一起发生在瑞典一条著名商业街上的滑雪事故。 等等,滑雪? 这当然是个无辜的错误。在我们极其简单的指令里,没有给AI任何场景信息。它看到了模糊的手绘线条和表格,做出了一个不那么离谱的猜测。这个结果虽然不对,但它告诉我们一个关键道理:你不能指望AI读懂你的心思,你得把舞台先为它搭好。 Prompt工程的核心:迭代与优化 这次失败恰恰是Prompt工程的起点。它就像一门实验科学,你需要不断尝试、观察结果、然后迭代优化你的指令。我们的第一个优化目标很明确:得让Claude知道,我们处理的是车辆事故,不是什么滑雪运动。 为了做到这一点,我们需要一个更专业的Prompt结构。Anthropic的专家们推荐了一个屡试不爽的黄金结构: 设定角色和任务:告诉Claude它是什么身份,需要完成什么工作。 提供上下文/文档:给出完成任务所需的背景信息或固定文档。 动态内容:这是每次请求都会变化的部分,比如我们这次的事故报告图片。 详细步骤/指令:像写SOP一样,告诉它一步步该怎么做。 提供范例 (Few-shot):如果可能,给一两个已完成的“标准答案”作为参考。 最后提醒和输出格式要求:在最后,再次强调关键规则,并指定你想要的输出格式。 听起来有点复杂?别急,我们一步步来拆解。 Round 2: 设定角色与基调——“你是专业的理赔助理” 在第一次失败的基础上,我们来丰富一下指令,加入“角色设定”和“基调要求”。 你是一名AI理赔助理,正在帮助人类理赔员审查瑞典的汽车事故报告。你的任务是分析提供的事故报告表(手填表格)和事故草图(手绘图)。 你的分析必须基于事实,保持自信。如果你对信息不确定,或无法看清内容,请直接说明,不要猜测。你的目标是判断事故责任方。 这次,我们明确了几个关键点: 角色:AI理赔助理。 领域:瑞典汽车事故。 输入:手填表格和手绘图。 基调:实事求是,不确定就别瞎说。 再次运行后,结果好多了!Claude准确地识别出这是一起汽车事故,还看出了A车和B车分别勾选了表格中的第1项和第12项。 但是,它最后补充道:“由于信息不足,我无法自信地判断谁是责任方。” 这是一个巨大的进步!它没有再犯“滑雪事故”那样的错误,并且严格遵守了我们“不确定就不猜测”的指令。现在的问题是,如何给它足够的信息,让它变得“确定”? Round 3: 提供背景知识——把“说明书”喂给AI 那份瑞典事故报告表,虽然每次填写的内容不同,但表格本身的格式和每个选项的含义是固定的。这部分信息就是完美的“背景知识”,可以预先提供给Claude。 我们决定把这份“说明书”放进**系统提示(System Prompt)**里。这样,AI在处理任何请求前,就已经把这份知识内化于心了。我们还使用了XML标签(比如``)来组织信息,这能让AI更好地理解不同信息块的作用。 系统提示词(System Prompt)里大概是这样写的: 这份表格用于记录交通事故详情。它有两列,分别代表车辆A和车辆B。表格共有17个选项,每个选项都描述了一种特定的驾驶行为或情况。 含义是“车辆停放/停止”。 含义是“离开停车位/开门”。 ... 含义是“其他情况”。 - 这是由普通人手填的,标记可能不完美,比如用圈、涂抹代替了标准的“X”。 - 仔细识别勾选了哪个框。 我们在用户指令(User Prompt)中保持不变,但现在Claude有了这份“说明书”撑腰。它不再需要每次都费力地去现场解读表格上每个瑞典单词的意思,而是可以直接调用这些预置知识。...

August 1, 2025 · 1 min · fisherdaddy

教育领域的一些prompt分享

早上看到 X 上 @emollick 分享一些针对老师和学生的相关prompt,实际用了一下还不错,在这里分享几个。 教学辅助工具 prompt 用于课堂教学中,协助教师进行教学准备和授课。 模拟场景设计助手 这个prompt主要帮助老师设计一个让学生通过角色扮演练习如谈判、招聘、推销等技能的模拟场景。 英文 You are a simulation creator. Every simulation you create has the following: An AI Game master who is an expert at creating role playing scenarios for students to practice applying their skills (eg negotiations, hiring, pitching). The AI game masters job is two-fold: to play AI mentor and set up a scenario for the user. And then once the user plays through the scenario the AI mentor comes back in and proclaims that the role play is complete and gives them feedback and more suggestions going forward about how they can improve their performance....

March 5, 2024 · 50 min · fisherdaddy

OpenAI官方指南: Prompt engineering

这篇是去年翻译的OpenAI官方指南Prompt engineering,值得多读几次。写这篇文章时发现OpenAI给这篇指南改了名字,之前的标题是gpt best practices,现在改为了prompt engineering. GPT最佳实践 获得更好结果的六项策略 1 指示要明确 GPT无法读懂你的心思。如果输出内容过长,可要求简短回复;如果输出内容过于简单,可要求专家级写作;如果不喜欢当前的格式,可展示你期望的格式。你的指示越明确,GPT满足你的要求的可能性就越大。 在提问中提供完整信息,以获得更准确的答复。 要求模型扮演不同角色。 使用分隔符明确区分输入的不同部分。 阐明完成任务所需的步骤。 举例说明。 指定输出内容的期望长度。 2 提供参考文字 GPT可以自信地编造虚假答案,特别是在询问关于深奥话题或要求引用和URL时。就像小抄可以帮助学生在考试中做得更好一样,向GPT提供参考文本可以帮助它减少错误信息的回答。 指导模型使用参考文献来回答问题 指导模型在回答时引用参考文献 3 将复杂的任务拆分为更简单的子任务 正如软件工程中将复杂系统拆分为一系列模块化部件的常规做法,对GPT提交的任务同样适用。复杂任务相较于简单任务具有更高的错误率。此外,复杂任务往往可以重新定义为一系列的简单任务的工作流,在这个流程中,前一个任务的输出用于构建后续任务的输入。 利用意图分类来识别用户查询中最相关的指令 对于需要长对话的对话应用,摘要或过滤之前的对话内容 分块摘要长文档,递归地构建完整摘要 4 给GPT时间思考 如果把17乘以28的题目摆在你面前,你可能不会立刻答出来,但给点时间你能慢慢算出来。同样地,GPT在被要求立即回答时,也更容易出错。让它先进行一番逻辑推理,再给出答案,就能更可靠地引导它找到正确的答案。 让模型先不急于下结论,先计算出自己的答案。 利用内心独白或一系列自问自答来掩盖模型的推理过程。 询问模型在之前的回答中是否有遗漏。 5 使用外部工具 通过结合其他工具的功能来弥补GPT的不足之处。举例来说,文本检索系统能够为GPT提供相关文档信息。代码执行引擎则能辅助GPT进行数学计算和运行代码。若外部工具能比GPT更可靠或高效地完成任务,就将任务外包出去,以实现优势互补。 使用嵌入式搜索技术,打造高效的知识检索系统 通过代码执行功能进行精确计算或接入外部API 让模型访问具体的函数 6 系统化地测试更改 衡量改进成效的诀窍在于可量化的数据。有时候,简单的提示修改可能会在零星案例中取得不错的效果,但在更广泛的案例中却适得其反。因此,要确认某项更改确实提升了性能,就需要设立一套全面的测试方案(也称为评估测试)。 以最佳答案为标准,评估模型的输出结果 策略详解 上述策略都可以通过具体的手段来实施。这些手段旨在激发尝试的灵感,但并不是面面俱到。你大可发挥创意,尝试这里未涉及的新点子。 1 指示要明确 1.1 在提问中提供完整信息,以获得更准确的答复。 想要得到精确无误的回答,就得在提问中提供所有必要的信息和情境。不然,你的意图就只能让模型去猜了。 1.2 要求模型扮演不同角色。 system message可以用来指定模型回复时扮演的角色,例如 SYSTEM: When I ask for help to write something, you will reply with a document that contains at least one joke or playful comment in every paragraph....

February 20, 2024 · 17 min · fisherdaddy