与 OpenAI CEO Sam Altman 穿越时空:GPT-5、超级智能与人类的“无限画布”

本文整理自 Cleo Abram 与OpenAI CEO Sam Altman深入对话,带你 5 分钟了解这篇访谈的精华。 我们正处在一个非比寻常的时代。人工智能(AI)的发展速度之快,力量之大,已经超出了几年前最大胆的科幻想象。在这场全球最高赌注的竞赛中,OpenAI和其CEO山姆·奥特曼(Sam Altman)无疑是风暴的中心。 最近,他们刚刚发布了至今最强大的模型GPT-5。这不仅仅是一次技术迭代,更像是一次带我们穿越到未来的预演。 在这场深度对话中,我们不谈估值,不谈人才战,而是尝试与Sam Altman一起进行几次“时空旅行”,去看看他正在构建的未来到底是什么样子,以及它对我们每个人意味着什么。 欢迎来到GPT-5时代:“你将要用到的最笨的模型” 不久前,Sam Altman曾说,GPT-4将是“我们不得不使用的最笨的模型”。这听起来有些凡尔赛,毕竟GPT-4已经能在SAT、法学院入学考试(LSAT)等多种标准化测试中超越90%的人类,甚至还能通过品酒师和医生执照考试。 那么,刚刚发布的GPT-5,又带来了怎样的飞跃? Sam坦言,尽管GPT-4在测试中表现惊人,但它显然无法复制人类真正擅长的许多事情。这或许也反思了那些标准化测试的价值。他相信,GPT-5也会遵循同样的轨迹:人们会被它的新能力震撼,然后又会发现新的、更高的期望。 “它会改变知识工作、学习方式和创造方式,”Sam说,“但社会会与它共同进化,我们会用更好的工具去做更了不起的事。” 一场7秒钟的“贪吃蛇”编程之旅 为了让我们更直观地理解GPT-5的魔力,Sam分享了一个有趣的个人经历。 “我上初中的时候,有一台TI-83图形计算器。我花了很长时间,用极其痛苦的方式,在上面写了一个‘贪吃蛇’游戏。前阵子,我心血来潮,用一个早期版本的GPT-5试了一下,问它:‘你能做一个TI-83风格的贪吃蛇游戏吗?’ 结果,它只用了7秒钟就完美地完成了。 我当时愣了3秒钟,心想,我11岁的自己看到这个会觉得很酷,还是会觉得失去了奋斗的乐趣?但这个念头转瞬即逝,我立刻有了新点子:‘给这个游戏加个疯狂的新功能!’它马上就实现了。‘我希望界面看起来是这样’,‘我想让它能做到这个’……我好像又回到了11岁编程时的那种状态,但速度快了无数倍。想法可以实时变成现实,这种创造的快感太惊人了。” 这个故事完美诠释了GPT-5的核心飞跃:它不仅仅能回答问题,更能即时、按需地创造复杂的软件。 这是一种在GPT-4时代不曾存在的、能够将想法瞬间具象化的能力。 “认知负重”的消失,是好事还是坏事? 这引出了一个有趣的问题:当AI能瞬间完成我们过去需要投入大量“认知负重”(Cognitive Time Under Tension)才能完成的任务时,我们的大脑会不会变得“懒惰”?就像健身一样,花30秒做一个深蹲比花3秒钟能锻炼更多肌肉。思考也是如此。 Sam承认,的确有人在用ChatGPT来“逃避思考”,但也有更多人,尤其是那些顶尖的5%的用户,正用它来“进行前所未有的深度思考”。 “社会是一个竞争激烈的地方,”他推测道,“当人们拥有了更强大的工具,期望值也会随之水涨船高。最终,那些善用AI来增强自己‘认知负重’的人,会创造出更了不起的成就。” 拨开迷雾:通往超级智能的崎岖之路 GPT-5只是一个开始,OpenAI的终极目标是超级智能(Superintelligence)。这到底意味着什么? Sam给出了一个具体的定义: “如果我们有一个系统,它在AI研究方面的能力超过了整个OpenAI的研究团队;如果同一个系统,在管理OpenAI这家公司方面能比我做得更好……那么,这个集结了超越顶尖研究员、顶尖CEO能力的系统,对我来说,就是超级智能。” 这个在几年前听起来像科幻小说的场景,如今似乎已在迷雾中若隐若现。 那么,我们如何抵达那里? Stripe的CEO Patrick Collison提出了一个关键问题:“通用大模型(如GPT系列)大概在哪一年能做出重大的科学发现?” Sam的预测是,在未来2到3年内,最晚到2027年底,大多数人会公认AI已经独立作出了重大的科学发现。 他用一个例子来说明我们目前的位置: 一年前,AI能解决高中水平的数学竞赛题,这对于专业数学家来说可能只需要几分钟。 最近,AI在国际数学奥林匹克(IMO)竞赛中拿到了金牌。这些题目,每个都需要顶尖选手花费一个半小时来解决。 下一步,是证明一个重大的新数学定理,这可能需要一位顶级数学家投入上千小时的工作。 “我们正在这条轨道上前进,”Sam说,“从几分钟的任务,到几十分钟的任务,再到上千小时的任务。我们需要不断地扩展模型的规模和能力。” 但这不仅仅是算力问题。真正的科学发现,往往需要设计新的实验、建造新的仪器来收集地球上尚不存在的数据。这个与物理世界互动的过程,将会是AI前进道路上一个自然的“减速带”。 生活在AI时代:几个来自未来的场景 场景一:2030年,我们如何辨别真伪? 还记得那个“兔子在蹦床上跳”的病毒视频吗?很多人喜欢它,分享它,最后才发现,它是AI生成的。 到了2030年,当我们刷着社交媒体时,如何分辨哪些是真实的,哪些是AI的创作? Sam认为,我们对“真实”的定义会逐渐演变。“你现在用iPhone拍一张照片,它就已经经过了大量AI处理,比‘真实’更‘好看’。我们已经接受了这一点。未来,我们将习惯于一个更高比例的媒体内容是AI生成或深度编辑的。就像我们看科幻电影,我们知道那是假的,但我们依然享受其中。人们的媒介素养会自然而然地提升。” 场景二:2035年,大学毕业生的世界 有人预测,五年内一半的入门级白领工作将被AI取代。那么,2035年大学毕业的年轻人将面临一个怎样的世界? Sam对此感到前所未有的乐观。 “如果我今年22岁大学毕业,我会觉得自己是历史上最幸运的孩子。”他激动地说,“因为你拥有了前所未有的强大工具,去创造全新的东西。现在,一个人完全有可能创办一家最终市值超过十亿美元的公司,为世界提供惊人的产品和服务。这在过去是不可想象的。” 他更担心的不是年轻人,而是那些62岁、不愿或难以重新学习适应新工具的劳动者。对于年轻人来说,这更像是一个充满无限可能的新大陆。 场景三:2035年,AI如何守护我们的健康? 如果说AI有一个领域能给全人类带来最直接的福祉,那一定是健康。 “GPT-5在健康咨询方面的准确性已经有了显著的提升。”Sam透露,大量的用户正在使用ChatGPT寻求健康建议,甚至有人通过它诊断出了医生都未能发现的罕见病。 但咨询只是第一步。他希望到了2035年,情况会是这样: “我希望能够对GPT-8说:‘去治愈这种特定的癌症。’然后GPT-8会去思考,阅读所有文献,然后说:‘好的,我需要你让实验员帮我做这9个实验。’两个月后,我们把结果反馈给它。它再次思考,然后说:‘好的,再做一个实验。’最后,它会告诉你:‘去合成这个分子,它就是解药。’” 这种由AI主导的、加速千百倍的科学发现,将是AI带给人类最深刻的礼物。 AI背后的引擎:三大瓶颈与一个关键 要实现这一切,OpenAI面临着巨大的挑战。Sam将其归结为四个限制因素:算力(Compute)、数据(Data)、算法(Algorithms),以及他特别补充的第四点——产品(Products)。 算力:这可能是“人类历史上最大、最昂贵的基础设施项目”。从芯片制造、服务器组装到数据中心建设,整个供应链极其复杂。目前最大的瓶颈是能源。“要建一个千兆瓦级的数据中心,你首先得找到一个能提供千兆瓦电力的地方,这比你想象的要难得多。” 数据:我们正在进入一个“数据枯竭”的阶段。对于GPT-5这样的模型来说,地球上所有的物理教科书它都已经“吃透”了。下一步,AI不能只学习已知,它必须去发现未知。这意味着要创造合成数据,或者让AI自己去设计实验、探索世界。 算法:这是OpenAI最引以为傲的地方。从最初被嘲笑的GPT-1“猜下一个词”的游戏,到后来“强化学习+推理”的巨大飞跃,算法上的突破一直是指数级增长的核心驱动力。Sam透露,这条路并非一帆风顺,他们也曾走过弯路(比如一个代号“Orion”的过于庞大笨拙的模型),但总体上,进步的曲线是“惊人地平滑”的。 产品:纯粹的科学进步如果不能交到用户手中,就无法与社会共同进化。打造像ChatGPT这样被大众喜爱的产品,同样至关重要。 一场社会实验:我们共同的责任 当一个研究员对模型性格做出一个微小的调整,就可能影响全球数十亿次的对话时,Sam感受到了前所未有的敬畏和责任感。“这股力量太庞大了,它发生得太快了。”...

August 11, 2025 · 1 min · fisherdaddy

OpenAI 联创 Greg Brockman 深度访谈:从数学神童到 AGI 掌舵者,我们该如何构建未来?

在 AI Engineer 大会的舞台上,OpenAI的联合创始人兼总裁Greg Brockman坐下来,进行了一场坦诚而深入的对话。这位AI领域的关键人物,平时低调,却在这次访谈中分享了他非同寻常的个人经历、OpenAI背后的故事,以及对技术未来的深刻洞见。这不仅仅是一次访谈,更像是一次与朋友的促膝长谈,充满了有趣的轶事和宝贵的经验。 从数学梦到代码“魔法”:一个意外的开始 你可能很难想象,这位如今在代码世界里呼风唤雨的大神,最初的梦想其实是成为一名数学家。他着迷于像伽罗瓦和高斯这样的天才,梦想着能在长达数百年的时间尺度上做出贡献。“如果我提出的任何东西在我有生之年就被用上了,”他开玩笑说,“那说明它还不够长远,不够抽象。” 然而,命运的转折点来得有些突然。高中毕业后,他写了一本化学教科书,但朋友告诉他:“没人会出版这个的。你要么自己想办法,要么就建个网站吧。”面对自费出版的高昂成本和繁杂工作,他果断选择了后者。 “于是,我猜我得学学怎么做网站了。” 他就这样一头扎进了W3Schools的PHP教程(在场的很多老程序员都会心地笑了)。他做的第一个小东西是一个表格排序插件。当他点击列标题,表格真的按照他脑海中的设想排序时,他感到了一种前所未有的“魔法”。 “数学的奇妙在于,你深入思考一个问题,用一种晦涩的方式(我们称之为‘证明’)写下来,然后可能只有三个人会关心。但编程不一样,你同样用一种晦涩的方式(我们称之为‘程序’)写下来,可能也只有三个人会读你的代码,但所有人都能享受到它带来的好处。你脑海中的想法变成了现实,实实在在地存在于世界上。那一刻,我意识到,这才是我真正想做的事。” 对百年时间尺度的执念,瞬间被创造的即时快感所取代。他只想去“构建”(build)。 辍学加入Stripe:挑战极限的“24小时奇迹” 正是这种构建的热情和惊人的天赋,让还在上大学的Greg收到了Stripe的冷启动邮件。当时,Stripe还只是一个三個人的“庞大”公司。通过哈佛和MIT的朋友圈推荐,Stripe找到了这位在两所顶级学府都留下过足迹的“双料红人”。 Greg回忆起与Stripe创始人Patrick Collison的第一次见面,那是个风雨交加的夜晚,两人一见如故,彻夜畅聊代码。他立刻感觉到:“这就是我一直想合作的那种人。”于是,他毅然从MIT辍学,飞往了加州。 早期的Stripe远比外界想象的要艰难。一个流传甚广的“都市传说”是Stripe工程师会帮客户上门安装代码,虽然这只发生过寥寥几次,但它背后“客户至上”的精神是真实的。Greg分享了一个更惊心动魄的故事: 当时,Stripe急需从原有的支付后端迁移到富国银行(Wells Fargo),但银行方面表示,技术对接通常需要9个月。对于一家初创公司来说,9个月简直是天方夜谭。 “我们不能等,”Greg说。于是,他们把这次技术对接当成了一次大学里的“期末冲刺”。 24小时内,整个团队像解题一样分工合作:Greg负责实现所有功能,John Collison从上到下写测试脚本,Daryl从下往上验证。 第二天早上,他们与银行的认证人员通话,第一次测试失败了。对方习惯性地说:“好的,那我们下周再聊。” Patrick则像个出色的“拖延大师”,在电话里不停地找话题,为Greg争取宝贵的调试时间。就在那通电话里,他们调试了5轮代码。 虽然最终还是失败了,但对方被他们的执着打动,破例在两小时后给了他们第二次机会。这一次,他们成功了。 “就因为我们没有接受那些所谓的‘常规流程’,”Greg总结道,“我们在短短几个小时内,完成了正常情况下需要六周才能完成的开发工作。” 他认为,这种从第一性原理出发,敢于挑战那些不再适用于当今环境的“无形约束”,是创业和创新的关键所在。 点燃AGI之火:从图灵的“孩童机器”到深度学习的春天 早在2008年,Greg就读了艾伦·图灵1950年的那篇奠基之作《计算机器与智能》。最让他震撼的,不是“图灵测试”本身,而是图灵提出的一个超前构想: “你永远无法为智能写下所有的规则。但如果你能创造一个像人类孩童一样学习的‘孩童机器’(child machine),然后通过奖励和惩罚来教育它,它最终就能通过测试。” 这个想法深深地吸引了他:一台能够自己理解和解决问题,甚至超越人类程序员理解能力的机器。这感觉才是解决人类重大问题的根本之道。然而,当他兴冲冲地去找一位NLP教授时,对方却递给他一堆“语法分析树”(parse trees),这让他感到理想与现实的巨大差距,一度陷入了“绝望之谷”。 直到深度学习的浪潮袭来。 2012年的AlexNet在ImageNet竞赛中一鸣惊人,一个相对通用的学习机器,用卷积神经网络,轻松击败了计算机视觉领域几十年的研究成果。很快,这个“魔法”开始在NLP、机器翻译等各个领域复现,打破了不同学科间的壁垒。 “那一刻,我意识到,这就是图灵所说的那种技术。”Greg说。 他发现,神经网络的核心思想可以追溯到1943年,而那些在“AI寒冬”中被嘲笑为“只会堆砌更大计算机”的研究者,恰恰做对了事情。“是的,”他笑着说,“这正是我们所需要做的。” 所有因素都已具备,现在,只需要去构建。 构建OpenAI:当工程师文化遇上学术研究 在2022年,Greg曾写道:“现在是成为ML工程师的时代。”他坚信,优秀的工程师与优秀的研究员对未来的贡献同等重要。这种“研究与工程并重”的理念,从一开始就根植于OpenAI的文化中。 但他坦言,融合两种文化并不容易。 工程师习惯于清晰的接口(interface),认为只要接口不变,背后的实现可以随意更改。 研究员则不然,因为模型性能的细微下降可能来自系统任何地方的bug,他们必须理解整个系统,接口的抽象在他们看来并不可靠。 这种思维差异曾导致项目停滞不前。最终,他们摸索出了一种合作模式,其核心是Greg所强调的“技术谦逊”(Technical Humility)。 “对于加入OpenAI的工程师,我总会说,你带着宝贵的技能而来,但这和传统的Web创业公司是完全不同的环境。最重要的事情是,带着谦逊的心态,去倾听、去理解,直到你真正明白‘为什么’。在那之后,你再去做出改变,重构架构,改进抽象。” 这种互相尊重、深度融合的伙伴关系,最终成为了OpenAI强大创新能力的基础。 发布幕后:从“心流编程”到AGI时代的开发新范式 1. 疯狂的发布日 无论是ChatGPT还是最新的GPT-4o,OpenAI的每次发布都像一场风暴。ChatGPT在5天内吸引了100万用户,而GPT-4o的图片生成功能更是在5天内吸引了1亿用户。 “我们原本以为ChatGPT需要等到GPT-4发布才能火起来,”Greg透露,“结果我们大大低估了用户们的热情。” 面对远超预期的流量,他们做出了一个艰难但必要的决定:从研究团队那里临时抽调大量算力来支持线上服务。“这相当于抵押了未来,”他说,“但如果你能让用户体验到魔法,这一切都是值得的。” 2. “心流编程”与未来 在GPT-4的发布会上,Greg现场演示了让模型根据一张手绘草图生成网站代码,这个“心流编程”(vibe coding)的时刻让世界第一次直观感受到了AI编程的魔力。(一个有趣的彩蛋是:那张草图是他妻子画的,因为他自己的字迹连AI都识别不了。) 他认为,“心流编程”只是一个开始,它代表着一种赋权。未来,AI编程将朝着更强大的“智能体”(Agentic)方向发展。我们不再只是与AI进行交互式编程,而是可以部署成千上万个AI智能体,像管理同事一样管理它们,让它们在云端自主完成任务。 3. AI如何重塑我们的编码方式? 在Greg看来,Codex等AI编程工具正在深刻地改变我们组织代码的方式。过去,我们的代码库是为人类的优势而设计的;未来,我们需要为模型的优势而设计。 这意味着: 更小的模块化:将代码拆分成更小、功能单一的模块。 完善的测试:编写可以被快速、频繁运行的测试用例。 清晰的文档:让模型能够理解每个模块的作用。 “这听起来就像是优秀的软件工程实践,对吧?”他说,“只是过去我们因为人力成本高而常常“偷懒”。现在,模型会比你多运行成千上万次测试,所以这些‘好习惯’变得前所未有的重要。” 从某种意义上说,我们应该像为初级开发者构建代码库一样,来最大化AI的效能。 4. 迎接AGI时代的开发新范式 NVIDIA创始人黄仁勋(Jensen Huang)也通过视频提出了一个问题:当AGI时代来临,开发者的工作流会发生怎样的变化?...

August 11, 2025 · 1 min · fisherdaddy

ChatGPT 负责人首次揭秘:从黑客松到 10 亿用户,你不知道的疯狂故事和 GPT-5 内幕

本文整理自对ChatGPT 的负责人 Nick Turley 的采访,带你 5 分钟了解这篇访谈的精华。 ChatGPT负责人首次揭秘:那个差点被命名为“与GPT-3.5聊天”的黑客松项目,如何改变了世界? 你可能每天都在用它,但你绝对想不到,那个如今拥有近10亿用户、改变了无数人工作和生活的ChatGPT,诞生之初竟如此“草率”和“偶然”。 它差点就被命名为一个极客味十足的“与GPT-3.5聊天”(Chat with GPT-3.5),它的付费模式源于一次“顶不住了”的服务器崩溃,它的20美元定价来自一份匆忙发在Discord上的问卷…… 最近,一直“藏在幕后”的ChatGPT负责人 Nick Turley 接受了他的首次深度播客访谈,毫无保留地分享了这些令人瞠目结舌的幕后故事。他曾是Dropbox和Instacart的产品负责人,如今,他掌管着可能是人类历史上最举足轻重的产品。 让我们坐好,听听这位“火箭船”上的关键人物,亲口讲述这一切是怎么发生的。 一个没人看好的“黑客松项目”,10天冲刺上线 故事的起点,并不是什么宏大的战略规划。 在GPT-4训练完成之际,OpenAI内部已经有了一个面向开发者的API产品,但团队发现了一个瓶颈:每次模型更新,都会“搞砸”开发者的应用,这让快速迭代和学习变得异常困难。团队迫切需要一个能直接与海量用户互动、收集真实反馈的渠道。 于是,OpenAI搞了一场内部“黑客松”(Hackathon),主题是打造一个“超级助理”(Super Assistant)。大家的热情很高,各种想法冒了出来,比如能帮你开会的“会议机器人”,还有超前时代的“编程工具”。 但一个有趣的问题出现了:无论团队测试哪个具体应用,用户总想用它来干点别的。“这项技术太通用了,” Nick 回忆道,“你给他们一个锤子,他们却想用它来拧螺丝、当尺子、甚至开瓶盖。” 几个月的原型设计后,团队做出了一个关键决定:放弃具体场景,干脆就做一个开放式的聊天界面,看看大家到底想用它来干什么。 这个决定一下,节奏快得惊人。 “我当时就说,‘10天,10天后我们就得把这玩意儿发出去!’” Nick说。 这个最初的团队,简直就是一支“杂牌军”:有来自超算团队、以前写过iOS应用的工程师;有来自研究团队、业余写后端代码的研究员。他们用一个名为SA Server(Super Assistant Server的缩写)的黑客松代码库,在短短10天内,把产品拼凑了出来。 他们给产品起的名字也极其随意,一开始就打算叫“与GPT-3.5聊天”,因为“我们真没觉得它会成为一个成功的产品,它就是一个研究演示品。” 直到上线前一晚,才改成了稍微好一点点的“ChatGPT”。 当时的计划是,赶在圣诞假期前上线,收集点数据,等假期回来就把这个“临时项目”关掉。 然后,Sam Altman发了一条推文。 剩下的,就是历史了。 “最大化加速了吗?” — OpenAI的节奏与心法 ChatGPT的意外爆红,让Nick和团队陷入了从“手忙脚乱”到“难以置信”的循环。但他们很快意识到,速度和执行力,恰恰是他们能抓住这次机会的关键。 Nick将一种理念深深植入了团队文化中,那就是设定团队的“静息心率”(resting heartbeat)——一种快速迭代、持续向前的内在节奏。 在OpenAI内部,有一个流传甚广的梗,它源自Nick经常问的一个问题: “Is it maximally accelerated?” (这个项目被最大化加速了吗?) 这个问题甚至变成了一个粉色的、用Comic Sans字体制作的Slack表情包。每当有人想推动某个项目,或者质疑某个延迟时,就会甩出这个表情。 “我就是想直接跳到重点:‘为什么我们现在不能做?为什么明天不行?’” Nick解释说。这并不是要无脑求快,而是一个强大的思维工具,它能迫使团队分清什么是真正的阻碍,什么是可以绕过的流程。 “在AI领域,你只有把产品发布出去,才能真正理解它的可能性和用户的需求。” Nick强调,“很多东西是无法预先推演的。你必须先开枪,再瞄准。” 当然,这种“最大化加速”的理念并非适用于所有事。在安全问题上,OpenAI采用了完全相反的、极其严谨和审慎的流程。对于像GPT-5这样的前沿模型,团队会投入大量时间进行“红队演练”、外部评估,确保在推向世界前,已经做好了充足的准备。 快与慢的辩证法,构成了OpenAI独特的执行力。在产品开发上追求极致的速度,在安全伦理上保持极致的审慎。 那些改变历史的“偶然”决定 在高速狂奔中,很多当初看似不起眼的临时决策,最终都产生了改变行业格局的影响。 1. 那个20美元的定价,来自一份谷歌问卷 ChatGPT上线初期,由于用户量暴增,服务器频繁宕机,主页上挂着一个AI生成的“道歉诗”。团队急需一种方式来“劝退”一部分需求,同时为真正有需要的用户提供稳定服务。于是,“付费版”的想法诞生了。 但这玩意儿该怎么定价? Nick回忆,当时他急得像热锅上的蚂蚁,给一位定价专家打电话求助,但根本没时间消化那些复杂的建议。情急之下,他做了一件非常“野路子”的事: 他用谷歌表单创建了一份问卷,里面只有4个问题——完全照搬了当时网上流传的“Van Westendorp定价法”,然后把链接甩到了公司的Discord社群里。 第二天早上,一份科技媒体的文章赫然写着:“揭秘!ChatGPT团队用四个天才问题为产品定价!” Nick看到后哭笑不得:“要是他们知道真相就好了。”...

August 11, 2025 · 1 min · fisherdaddy

ChatGPT 会让人变笨还是成为终极学习工具?来自 OpenAI 和一线学生的真实声音

本文整理自 OpenAI 教育负责人对 ChatGPT 的深度解读,带你 5 分钟了解这篇访谈的精华。 ChatGPT会让人变笨吗?来自OpenAI和一线学生的真实答案 当ChatGPT横空出世,整个教育界都为之一振。无数的讨论瞬间点燃:这玩意儿会让学生变懒、变笨,甚至让“脑子生锈”吗?它是不是就是个终极作弊工具? 为了搞清楚这些问题,我们不妨听听两种最真实的声音:一个是来自行业内部的顶层设计者——OpenAI的教育负责人Leah Bellski;另一个则来自每天都在使用这些工具的一线学生——Yabi和Alaa。他们的分享,或许能帮我们拨开迷雾,看到一个更清晰的未来。 一个宏大的“登月计划”:为每个人打造AI导师 Leah Bellski在教育领域深耕了15年,曾在世界银行和Coursera致力于让教育普惠全球。当她加入OpenAI时,首席运营官Brad Lightcap给了她一个听起来既疯狂又鼓舞人心的任务——去追逐那个“登月计划”。 这个计划的核心梦想是:AI能极大地提升人类潜能,成为伴随每个人一生的有效导师和伙伴。 这不仅仅是一个产品目标,更是一种愿景。Leah的任务就是要去实现它,并确保这个工具一旦建成,全世界的每一个人都能用上。这个愿景也解释了为什么OpenAI如此看重教育。 如今,拥有6亿用户的ChatGPT,已经可以说是世界上最大的学习平台之一。“学习”是其最核心的用途之一。这不仅限于传统课堂,更延伸到了课堂之外的广阔世界。 AI在全球教育领域的真实足迹 AI教育的浪潮正以前所未有的速度席卷全球。 教师们是早期拥抱者:他们不仅用AI来减轻备课、批改作业等行政负担,还积极地将其带入课堂,探索新的教学方法。 国家级的战略布局:像爱沙尼亚这样教育水平顶尖的国家,率先看到了AI的潜力,希望用它来进一步激发学生潜能、赋能教师。紧随其后的国家络绎不绝,他们不仅希望通过AI提升教育质量,更意识到,要建立一个AI驱动的经济体,就必须培养出懂得使用AI的下一代。这已经不是开设几门AI课程那么简单,而是要让AI融入每一门课,成为学生毕业时必须掌握的核心技能。 从“猫鼠游戏”到建立信任 当然,AI进入校园并非一帆风顺。最初,许多学校的第一反应是“防堵”,推出了各种不靠谱的“AI内容检测器”。这种做法不仅伤害了那些被误判为作弊的学生,也让师生关系从一开始就站错了脚。 Leah坦言,我们最初“走错了路”,把重点放在了监管和限制上,而不是去思考如何重新设计我们的评估方式和作业形式。 更深层次的问题在于信任。现在的大学生是“新冠一代”,他们对在线监控式的教育技术有着天然的警惕。如果学校只是提供一个AI工具,却不明确承诺不会监控学生的对话,学生们是不敢放心使用的。 好在,情况正在好转。越来越多的教育者意识到,单纯的禁止是行不通的。他们开始积极探索如何将AI融入教学,设计出更有挑战性、更能激发创造力的项目。 不只是给答案:“学习模式”的诞生 为了解决“AI只会给答案,让人无法深度学习”的担忧,OpenAI推出了一个名为**“学习模式”(Study Mode)**的新功能。 这个功能的灵感来源于一次印度之行。团队发现,在印度,家庭会在课后辅导上投入巨额开销,年轻人有着极强的学习意愿。这促使他们思考:如何让ChatGPT成为一个比现在更好的导师? “学习模式”就是答案。它彻底改变了交互方式: 它不会直接给你答案,而是像苏格拉底一样,通过反问来引导你思考。 它会个性化定制内容,根据你的知识水平调整难度。 它会鼓励你、追问你,比如“你想不想就这个话题来个小测验?”或者“你想不想再深入聊聊?” 简单来说,它把一个“问答机”变成了一个真正的“学习伙伴”。未来,它甚至可能变得更加主动和多模态,比如在你学习有机化学时弹出交互式图表,或者在几周后提醒你:“嘿,还记得你说要攻克期末考试吗?我们再来复习一下吧?” 这个功能的目标,就是让学生不必成为一个“提示词工程师”,也能自然而然地进入深度学习的状态。 一线学生的声音:从史莱克同人小说到学习利器 理论归理论,学生们的真实体验又是怎样的?我们和来自南加州大学(USC)的Yabi与来自伯克利大学的Alaa聊了聊。 第一次“啊哈!”时刻 每个人的AI初体验都充满了故事感。 Alaa的经历很经典。高三时,他和同学们围在电脑前,抱着试一试的心态,让ChatGPT写一篇关于《杀死一只知更鸟》的论文。当一篇完整的文章瞬间生成时,所有人都被震撼了。他说:“我当然没有交那篇作业,但那一刻真的太酷了。” Yabi的经历则更有趣。她第一次使用ChatGPT,是让它写一篇……史莱克(Shrek)的同人小说。当她把这个“杰作”分享给室友时,大家觉得这事儿挺傻的。但对Yabi来说,这个有点无厘头的尝试让她看到了AI的另一种可能性——它不仅能用于学术,更能融入日常生活的方方面面,成为一个激发创意的工具。 课堂正在如何改变? 两位同学都观察到,教授们正在积极适应AI带来的变化。 从“是什么”到“怎么用”:作业和考试题目正在悄悄改变。过去那种“定义某个术语”的问题越来越少,取而代之的是“如何应用这个概念?”“它在更宏大的背景下意味着什么?”等更侧重于思辨和应用的问题。 分轨制的项目挑战:Alaa的计算机科学教授设计了两种项目路径供学生选择。你可以选择不用AI,完成一个传统的项目;或者使用AI,但必须接受一个更难的挑战,并写一篇反思,说明你是如何利用AI的。这种做法既保证了学生对基础知识的掌握,又鼓励他们利用新工具去挑战更高的高度。 成为AI的主人:高级玩家的提示技巧 和很多人想象的不同,这些深度用户并不是简单地复制粘贴。他们已经摸索出了一套让AI更好地为自己服务的“独门秘籍”。 设定角色(Persona):这是最常用的技巧之一。与其泛泛地提问,不如让AI扮演一个特定角色。比如,Yabi在研究阴谋论时,会让ChatGPT扮演不同政治立场的人,来分析同一个(由AI编造的,关于机场镜子的)阴谋论,从而获得更立体、更多元的视角。Alaa则会要求它扮演“顶级公司的顾问”或“极富创造力的教授”,从而获得更专业或更具启发性的回答。 提供明确的约束和背景:Yabi在做研究时,会先把几篇高质量的学术论文喂给ChatGPT,然后要求它“只能基于这些信息进行总结和分析”,从而保证了输出内容的严谨性。 要求批判性反馈:AI的回答往往过于正面和鼓励。为了得到真实的反馈,Alaa会在自定义指令里写上“不要废话,直接点,对我残酷一点”(No fluff, be brutally honest)。这样,AI就会变成一个严厉的批评家,帮助他发现作品中的真实问题。 AI vs. 社交媒体:主动探索与被动接收 一个有趣的趋势是,这两位学生都表示,他们花在ChatGPT上的时间越来越多,而在社交媒体(尤其是TikTok)上的时间则在减少。 他们认为,社交媒体提供的是一种“被动的内容消费”,你只是在无尽地滑动,接收着算法投喂给你的碎片化信息,这会让人变得“自满和懒惰”。 而使用ChatGPT则是一种主动的、有目的性的探索。你可以明确地提出问题,深入挖掘自己感兴趣的领域,这是一种高质量的信息获取方式。Alaa说:“当我想要学习和探索想法时,我会问ChatGPT,而不是去刷社交媒体。” 年轻人的希望与恐惧 对于未来,他们既充满乐观,也有着清醒的思考。 恐惧什么? Yabi担心“真理的中心化”。如果所有人都依赖同一个信息源,而不去主动寻找和整合不同来源的知识,这可能会形成一个巨大的信息茧房和糟糕的反馈循环。 Alaa则担心人们会因为滥用工具而忽视基础。他认为,教育的核心概念和解决问题的思维方式依然至关重要,如果学生们只想着用AI绕过学习过程,当他们真正进入职场时,会发现自己缺乏真正的竞争力。 希望什么? 他们都预见了一个人机协作的混合式教育未来。AI可以承担起教科书、助教甚至部分讲师的角色,提供标准化的、个性化的知识。而人类教师则会转型为导师(Mentor),更专注于培养学生的社交技能、批判性思维、伦理观念,以及如何更好地与AI协作。 正如Yabi所说:“教学的核心在于人与人的连接。谁教你,如何教你,会深刻地影响你的一生。这种人性的部分是AI无法替代的。”...

August 7, 2025 · 1 min · fisherdaddy

Anthropic 的 Jared Kaplan:从物理学到 AI,揭秘通往人类级智能的可预测路径

本文整理自 Anthropic 的联合创始人 Jared Kaplan 在 YC 创业学校的演讲,带你 5 分钟了解这篇访谈的精华。 “AI 的进步并不是因为研究人员突然变聪明了,而是因为我们找到了一个非常简单、系统性的方法来让 AI 变得更好,并且我们正在不断地转动那个曲柄。” 说这话的人是 Jared Kaplan,Anthropic 的联合创始人之一。有趣的是,仅仅在六年前,他的身份还是一位理论物理学家。他的职业生涯始于一个颇具科幻色彩的梦想——受到科幻作家母亲的影响,他想知道人类是否能造出超光速引擎。物理学,似乎是解答这个问题的唯一途径。 从研究大型强子对撞机到宇宙学,再到弦理论,Kaplan 沉浸在探索宇宙最根本规律的乐趣中。但慢慢地,他感到一丝沮丧,觉得物理学的进展不够快。与此同时,他身边许多朋友——包括后来 Anthropic 的同事们——都在谈论一个让他一度非常怀疑的领域:人工智能(AI)。 “AI?人们不是已经研究了50年了吗?” Kaplan 当时的想法代表了很多人的心声。但最终,他被说服了。他将物理学家那种探寻宏大规律、提出最根本问题的思维方式带入了 AI 领域,并幸运地发现了一些足以改变游戏规则的东西。 AI 训练的“秘密配方”其实很简单 在我们惊叹于 Claude 或 ChatGPT 的强大能力时,可能会觉得它们的训练过程高深莫测。但 Kaplan 指出,其核心原理可以归结为两个基本阶段。 第一阶段:预训练 (Pre-training) 这就像让一个学生海量阅读。模型会学习庞大的人类书面文本(现在也包括图片等多模态数据),目标只有一个:预测下一个词。 比如,当你说“在座谈会上,发言人很可能……”时,模型会知道,“说某些话”是高概率的词,而“是一头大象”则是极低概率的。通过这种方式,模型不仅学会了语言,更重要的是,它理解了信息之间的内在关联和世界知识的结构。 一张非常复古的图,展示了早期GPT-3的预测界面 第二阶段:强化学习 (Reinforcement Learning) 预训练后的模型更像一个知识渊博但行为散漫的“书呆子”。它知道很多事,但不知道如何与人有效互动。这时,就需要强化学习来“调教”它。 在这个阶段,人类(比如众包工作者)会与模型进行对话,并对模型的不同回答进行比较和选择,告诉模型哪个回答更好。这个“更好”的标准通常是 Anthropic 奉行的“HHH”原则:有帮助的 (Helpful)、诚实的 (Honest)、无害的 (Harmless)。 通过这种反馈,模型会逐渐学会哪些行为是值得鼓励的,哪些是需要避免的。它从一个单纯的“预测机器”转变为一个有用的对话助手。 另一张复古的图,展示了早在2022年为早期Claude收集反馈的界面 “规模法则”:AI 进步的可预测引擎 Kaplan 从物理学带来的最大洞见,莫过于发现了 AI 发展中的“规模法则”(Scaling Laws)。 作为一个物理学家,他习惯于从宏观视角提出一些“看起来很傻”的问题。当时,“大数据”的概念很流行,他就问:“数据到底要多大才算大?它究竟有多大帮助?” 同样的,大家都说更大的模型表现更好,他就问:“究竟好多少?” 在探寻这些问题的答案时,他和团队幸运地发现了一个惊人的规律:当你扩大 AI 的训练规模(包括计算量、模型参数量、数据集大小)时,模型性能的提升是可预测的,其表现出来的趋势像物理学或天文学中的规律一样精确。 这张图展示了模型性能(Y轴的Loss)随着计算量、数据量和模型大小(X轴)的增加而平滑、可预测地下降 这个发现在当时(大约2019年)给了他们巨大的信心。当一个趋势在好几个数量级上都成立时,你就有理由相信它在未来很长一段时间内会继续成立。 而更妙的是,这种规模法则不仅存在于预训练阶段。研究者 Andy Jones 在研究一个名为“六贯棋”(Hex)的棋类游戏时也发现,AI 的棋力(用 ELO 等级分衡量)同样随着训练量的增加呈现出漂亮的直线增长。...

August 7, 2025 · 1 min · fisherdaddy

Anthropic CEO 达里奥·阿莫迪深度访谈:解密AI背后的指数级商业引擎与“AGI信仰者”文化

本文整理自 John Collison 对 Anthropic CEO Dario Amodei的 深度访谈,带你 5 分钟了解这篇访谈的精华。 当一家公司在一年内将年化收入(ARR)从0做到1亿美元,第二年又从1亿冲向10亿,并在第三年过半时轻松突破40亿美元,你很难不感到好奇。这家公司就是前沿AI实验室Anthropic,而坐在驾驶座上的是其CEO——达里奥·阿莫迪(Dario Amodei)。 从物理学家到计算神经科学家,再到谷歌大脑、OpenAI的核心研究员,达里奥的履历闪闪发光。但如今,他不仅是技术领袖,更是一家全球增长最快企业的掌舵人。在这次深度对话中,他以前所未有的坦诚,揭示了Anthropic火箭般增长背后的商业逻辑、独特的公司文化,以及他对AI未来的深刻洞见。 一切始于信任:七位联合创始人与“反常识”的股权结构 很多人会好奇,和自己的亲兄妹一起创业是种怎样的体验?达里奥的妹妹丹妮拉(Daniela)正是公司的总裁。达里奥笑着说,这其实是一种绝佳的互补。他负责战略,思考那些别人没看到或最重要的事;而丹妮拉则负责将战略落地,高效执行。他们各司其职,彼此拥有绝对的信任。 但Anthropic的“反常识”之处远不止于此。公司创立之初,竟有七位联合创始人。当时几乎所有人都警告他:“这简直是场灾难,公司很快就会在内斗中分崩离析。”更让人大跌眼镜的是,达里奥决定给每位联合创始人完全相同的股权。 “事实证明,这恰恰是我们力量的源泉。”达里奥解释道。这七个人不仅是同事,更是长期并肩作战、价值观高度一致的伙伴。这种深度的信任基础,让公司在指数级扩张的过程中,依然能牢牢守住核心价值观和团结。七位创始人就像七个灯塔,将公司的理念投射到不断壮大的团队中。 AI的商业引擎:像开发新药一样,打造一个个“盈利公司” Anthropic的增长速度堪称商业史上的奇迹。达里奥分享了他们令人难以置信的融资经历: 2023年初,公司收入为零。他向投资者预测当年能实现1亿美元营收。许多人认为他“疯了”、“失去了所有信誉”。结果,他们做到了。 2024年初,他预测能从1亿美元增长到10亿美元。质疑声依旧,但他们再次做到了。 如今,公司的年化收入已远超40亿美元。 这种指数级增长的背后,是一种完全不同于传统软件的商业模式。达里奥将其类比为药物研发。 “你可以把我们训练的每一个模型,都看作一个独立的公司。” 想象一下这个场景: 2023年:你投入1亿美元训练一个模型(就像研发一款新药)。 2024年:这个模型为你带来了2亿美元的收入。从单个项目看,它是盈利的。 但与此同时,在2024年,你基于技术进步,又投入了10亿美元去训练一个更强大的下一代模型。 2025年:这个10亿美元的模型可能会带来20亿美元的收入,但你可能又会投入100亿美元去研发下一个…… 从传统的损益表(P&L)来看,公司似乎一直在“亏损”,而且亏损额越来越大。但如果我们把每个模型看作一个独立的产品(或一家公司),它们实际上是盈利的。真正发生的是,公司在享受上一代模型带来的回报时,正以前所未有的规模对下一代技术进行更庞大的研发投资。 “我们正处在这条指数曲线上,”达里奥说,“这条曲线何时会放缓?我们会在多大的规模上达到平衡?这是我们每天都在面对的不确定性,也是这个领域最迷人的地方。” 他半开玩笑地补充道,这种商业增长与模型能力的提升存在一种“换算关系”。当你投入10倍的资源,模型能力从“聪明的本科生”跃升为“聪明的博士生”,客户(比如一家制药公司)会发现,后者的价值远远超过前者的10倍。这就像模型自身就有一种学习和在市场上取得成功的内在资本主义冲动,而产品和市场团队的工作,就是“擦亮窗户,让光芒照射进来”。 钱从哪儿来?编码只是冰山一角 AI到底在被用来做什么?为什么能产生如此巨大的收入? 达里奥指出,目前增长最快的应用是编程。这并非因为AI只能写代码,而是因为程序员这个群体本身就是技术的早期采用者,他们与AI开发者在技术和社交上都非常接近,使得新技术的扩散速度极快。 “一个新功能发布两小时后,网上就已经有人用它尝试了一万种可能,并形成了初步的社群意见。”他感叹道。 但编程只是一个预兆,它预示了即将在所有行业发生的事情。 客户服务:与Intercom等公司的深度合作,自动化处理大量重复但又各有不同的客户问询。 科学与生物:与Benchling这样的科学平台合作,也与大型制药公司如诺和诺德(Novo Nordisk)合作。一个惊人的案例是,过去需要九周才能完成的临床研究报告,Claude能在五分钟内生成初稿,人类只需几天时间检查即可。 金融服务:推出针对金融行业的Claude版本。 国防与情报:尽管这在外界看来颇具争议,但达里奥认为这是在践行“捍卫民主”的使命,而非简单的商业考量。他坦言,从商业角度看,从一家编程创业公司那里赚到同样多的钱,要比和政府打交道容易一个数量级。 API不是商品,模型就像有不同性格的厨师 有人认为,API生意没有粘性,最终会被商品化。达里奥和采访者都笑了,他们都经营着成功的API业务。 “这种说法就像是在说,如果我跟九个身高差不多、大脑结构相似的人待在一个房间里,我就被‘商品化’了,谁还需要我呢?”达里奥打了个风趣的比方。 他认为,AI模型远非商品。每个模型都有自己独特的**“个性”和“风格”**。 “这有点像烘焙蛋糕,或者说请不同的厨师做菜。你放入同样的食材,但不同的厨师做出来的味道就是不一样。你无法让一个厨师完全复制另一个人的手艺。” 客户会发现,在处理特定任务时,某个模型的回答就是更符合他们的偏好,即使他们也说不清为什么。而未来,**个性化(Personalization)**将成为加深这种“粘性”的强大护城河。当一个模型深度学习了你的个人偏好或公司业务流程后,切换的成本会变得极高。 “AGI信仰者”文化:如何在一个指数时代航行? 面对AI领域激烈的人才争夺战和天价薪酬包,Anthropic如何留住核心人才并保护商业机密?达里奥的答案是,打造一个**“AGI信仰者”(AGI-pilled)**的组织。 “AGI信仰者”意味着整个公司的每个人,从财务到招聘,从产品到法务,都深刻理解并围绕一个核心假设来工作:我们正处在一个技术能力呈指数级增长的时代,这会带来巨大的机遇和颠覆性的变化。 人才与IP:相比于个别的“价值一亿美元的几行代码”,达里奥认为公司真正的护城河是**集体性的“know-how”**和难以泄露的复杂工程能力。同时,他们通过信息分级(Compartmentalization)和非常高的员工保留率(在AI公司中最高)来保护自己。人们之所以留下,是因为对公司使命的真正信仰,以及对公司股权未来价值的看好。 产品开发:在AI时代,传统的产品路线图可能毫无意义。“如果你计划用六个月打造一个完美产品,那可能已经太晚了。”达里- 奥建议。产品必须围绕AI能力的未来发展方向来设计,避免成为一个轻易被下一代模型迭代掉的“包装纸”(wrapper)产品。迭代速度必须极快,因为你总是在**“第一天”**探索未知。 用户界面(UI):达里奥承认,目前的AI交互方式(比如文本框)还非常原始,处在“拟物化”(Skeuomorphism)或“无马马车”(horseless carriage)的阶段。未来的挑战在于设计一种全新的交互范式:既能让AI代理高效自主地完成任务,又能在关键时刻让用户轻松介入、审查和引导,而不会被海量信息淹没。 冲破“墙壁”,拥抱奇特的未来 从“AI无法推理”到“AI无法做出新发现”,再到“AI无法持续学习”,历史上AI的发展一次次冲破了人们设下的“根本性壁垒”。达里奥认为,这些所谓的“墙壁”,很多时候源于一种现代“活力论”(vitalism)——人们总想相信人类的认知有某种机器无法企及的、神秘的特殊性。 “事实是,AI模型的错误会比人类少得多,但它们的错误会更‘奇怪’。”他指出。一个喝醉酒的客服人员,我们能轻易识别他的状态不可信。但AI在犯错时,可能听起来依然条理清晰、充满自信。这需要我们人类去适应一种全新的协作模式和判断标准。 对于未来,达里奥预测,像AI自动完成报税这样的复杂任务,可能在2026或2027年就能实现,比许多人预想的要早。 面对AI带来的风险和潜在的经济冲击,他并不主张“暂停”或“减速”,因为这在现实中既不可能也不明智。他更倾向于建立**“护栏”**。如果说AI能带来10%的经济增长,那么为了安全和稳定,我们是否愿意接受9%的增长,并用那1%来购买“保险”? “我不想停止这场化学反应,”达里奥最后说,“我只想聚焦它的方向,确保它不会过热或冲出跑道。” 在与达里奥的对话中,你能清晰地感受到一种独特的张力:一边是对技术指数级进步的狂热信念和巨大野心,另一边则是对随之而来的巨大责任的冷静思考和审慎前行。这或许就是一家注定要深刻改变世界的公司,所应有的姿态。

August 7, 2025 · 1 min · fisherdaddy